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COMPOSITE CHRONICLES: A STUDY OF THE LESSONS LEARNED

IN THE DEVELOPMENT, PRODUCTION, AND SERVICE
OF COMPOSITE STRUCTURES

Louis F. Vosteen

Analytical Services & Materials, Inc.

and Richard N. Hadcock
RNH Associates

INTRODUCTION

The development of advanced fiber

composites in the 1960's brought aircraft
designers a new material option comparable to
the introduction of aluminum some 40 years
earlier. Carbon fibers, with moduli and

strengths comparable to steel and a density
half that of aluminum, created visions of 50%

weight saving for airframe structure. Although
such weight savings have been achieved on a
few specific components, the added weight
associated with load introduction, the need to

satisfy multiple design conditions, design and
producibility requirements that usually require
a balance of in-plane properties, accessibility
for maintenance, inspection, and damage
repair, and production cost constraints have
made weight savings of 15-30% a more realis-
tic and achievable goal.

As typically happens with the introduc-
tion of new technologies, advanced fiber

composites have had their share of difficulties
along with many notable successes. A few
programs involving utilization of composites
have experienced unforeseen problems and
premature failures during development testing.
Many more have been very successful, have
provided significant weight savings, and
service experience has been excellent. Thou-
sands of safety-of-flight components are in

production and are providing excellent service
on more than forty different US and foreign
military and civil fixed-wing aircraft and
twenty different helicopters. Most of these
composite components, as well as components
on technology development and demonstrator
aircraft, are identified in the Appendix to this

report.

The major issues today are associated
with the materials, manufacturing, and repair
costs and not with structural performance. The
structural problems and failures that have
occurred were primarily caused by deficien-
cies in the detail design of joints, cut-outs, and
discontinuities, designs that did not make
proper allowance for the lack of ductility and
anisotropic mechanical properties of the
composite materials. Other problems were
associated with communications between

engineering and manufacturing personnel,

especially when the people and facilities were
located hundreds of miles apart. In most
instances, design changes corrected the struc-
tural problems and most companies are now
using the "Concurrent Engineering" approach
with collocated design-production teams to
improve communications.

Given the problems and failures that
have occurred, and are still occurring, one

must ask whether the problems experienced
are similar and inherent in the nature of ad-

vanced composites or whether new problems
continually arise because of lack of technical
understanding of the materials and their
behavior. Furthermore, when programs are
successful, is there an underlying reason that
should be recognized, understood, and applied
in the future?

In an effort to find answers to these

questions, NASA Langley Research Center
contracted with Analytical Services and
Materials to conduct a study of past composite
aircraft structures programs and determine the
lessons learned during the course of those
programs. The study was focused on finding
major underlying principles and practices that
experience showed could have a significant



effecton thedevelopmentprocessandshould
berecognizedandunderstoodby thoserespon-
siblefor makingeffectiveuseof composites
for aircraftstructures.Publishedinformation
onprogramswasreviewedandinterviews
wereconductedwith personnelassociatedwith
currentandpastmajordevelopmentprograms.
In all, interviewswereconductedwith about
56peoplerepresenting32organizations.Most
of thepeopleinterviewedhavebeeninvolved
in theengineeringandmanufacturingdevelop-
mentof compositesfor thepasttwentyto
twenty-fiveyears.Severalof thepeople
interviewedwereretiredfrom prominent
positionsin governmentandindustry.Their
insightsandreminiscencesof lessonslearned,
andsometimesforgotten,areinvaluable.

ORGANIZATIONAL ISSUES

The various organizational issues, needs
and barriers associated with transfer of com-

posites technology were discussed at many of
the meetings. There was general agreement
about the needs, but some differences of

opinion about barriers, some of which are

dependent on company organization and vary
from company to company.

ORGANIZATIONAL BARRIERS

When advanced composite materials first
became available during the late 1960's, and
when the Air Force, Navy and NASA began to
fund the first advanced composites develop-
ment programs, there was considerable lack of
support and skepticism of the projected ben-
efits and usefulness of composites for aircraft
structures by industry.

The companies which were most suc-
cessful had a few senior corporate executives
who became champions for composites. These
companies assigned some of their most ca-
pable people to composites development
programs and set up teams to work with and
respond to the Government's initiatives. Even
though significant advances were made by the
early 1970's, upper management in some
companies were still raising concerns about
risks and questioned the predicted weight
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saving potential of composites. Twenty years

later, there are still some senior corporate
executives and engineers who feel that com-
posites have no place in airframes. A senior

government representative suggested that top
management education in composites is more
necessary now than ever. Management should
understand that problems invariably arise in
composites structures programs, but these

problems have generally been resolved satis-
factorily.

ORGANIZATIONAL NEEDS

"Concurrent Engineering", whereby a
new product or system is developed jointly
and concurrently by a team composed of
designers, stress analysts, materials and pro-
cesses, manufacturing, quality control, and
support engineers, as well as cost estimators,

has generally become the accepted approach to
improve the quality and performance and
reduce the development and production costs
of complex systems.

Most of the aerospace companies have
implemented concurrent engineering ap-
proaches in one form or another. Boeing, for
example, has formed "Design Build Teams"
(DBTs) for development of the Boeing 777.
The DBT hierarchy for a typical major struc-
tural component is shown in Figure 1. The
Boeing structures teams are composed of ten
to twenty people from the various engineering,
manufacturing, quality control, and cost
estimating departments. Where necessary,
teams also include people from Boeing pro-
curement and from subcontractors and suppli-
ers. The teams, each of which are collocated,

are responsible for producing a final design,
cost estimates, production planning, etc. of the
structural components-and subcomponents. All
drawings and interfaces with other teams and
subcontractors are made using the Boeing
computer network.

Lockheed, GD, Northrop, Vought and
other companies have all implemented similar
systems for new programs. The Grumman
"Task Teaming" approach also subdivides the
development effort into tasks and then collo-
cates small multidiscipline teams to perform
the tasks. McDonnell Douglas versions are



knownas"IntegratedProductDevelopment"
(IPD) and"IntegratedProduct/ProcessDevel-
opment"(IP/PD).

Theconcurrentengineeringapproach,in
combinationwith collocationof small
multidisciplineteamsof people,hasprovided
significantcostandschedulebenefitsto the
designof compositestructures.Problemsare
identifiedearlyandaresolvedby theTeam.
Organizationalbarriersarebrokendown,and
thepeopleassignedto ateamlearnaboutthe
differenttechnologiesandthespecificand
interrelatedproblemsassociatedwith design,
production,operations,andcosts.

TECHNOLOGY TRANSFER

Many of the people interviewed implied
that almost all of the critical advanced com-

posites technology developed in the US has
been developed by industry in a research and

Program

Sytstem Integration Teams

• Led by management

• Not Collocated with other Teams

Other

Integration Teams
Collocated

Multidiscipine Team Members
• Structures: Body, Wing,

& Propulsion

• Avionics, Flight Controls,

Subsystems, etc.

development (R&D) environment by a small

number of R&D people funded by DoD,
NASA, or Independent Research & Develop-
ment (IRAD) programs. Very little of the
critical technology has actually been devel-
oped by universities, research centers, or
government laboratories. The fact that the
technology was developed in a R&D environ-
ment has caused most companies to have
major problems with the transfer of the tech-
nology and experience to people working on
production programs. In four Navy and four
commercial aircraft programs, major compos-
ites design and producibility problems were

caused by the lack of composites experience of
the people working on the programs.

One solution to problems in technology
transfer among R&D and production groups
has been to assign the experienced R&D

people to the production program. The produc-
tion program gained from their expert knowl-
edge and the less experienced people working

r

Empennage DBTs

Collocated

Multidiscipine Team Members

Horizontal & Vertical Stabilizer

Structural Design

Analysis

Manufacturing/Tooling
Mat's & Processes

QC

Suportability
... etc.
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Figure 1. Organization of a structures Design Build Team.

* Programs that were cited as having suffered from a lack of experienced composites personnel included Navy

programs for the V-22 wing and fuselage, A-6 wing, AV-8B wing, and A-12. Civil programs included Lear Fan,

Starship, Boeing 777-300 elevator, and L-1011 vertical satabilizer.



on the program benefited from the "expert's"
experiences. However, other R&D and less
important production programs suffered
because the number of experienced composites

people was limited. In other companies, this
situation was ameliorated by assigning experi-
enced engineers and manufacturing people to
work with, and learn from, composite special-
ists on R&D programs. Experienced metal
design and manufacturing engineers can be
trained in the critical elements of composites
design and manufacture in a relatively short

time. Some suggested that the training could
take as little as a few weeks if the engineers

experienced in metals design are working
closely with experienced composites engineers
on composites programs. Many of these
"composites production program experts"
were later assigned to management or engi-
neering positions on other production pro-
grams or were transferred back into R&D
where their "real world" experiences from the
production program added to their capabilities.

Additional problems have occurred when
the design approach, structural analysis meth-
ods, materials, processes, tooling, etc. devel-
oped under R&D programs have been applied
to full-scale structures. R&D program budgets

have generally constrained the size and com-
plexity of demonstration components, and in
some cases, failed to identify real world
problems. Many R&D designs were very
structurally efficient and demonstrated weight

savings, but were not producible without
major design changes.

Very little of the technology developed
by one company under an R&D contract was
ever transferred to other companies via techni-
cal reports, presentations, lectures and courses.
Composites technology, which is highly
interactive and must cross many disciplinary
boundaries, was best accomplished by having
experienced and inexperienced people working
together. On programs that involved a team of
two or more companies, technology was
readily transferred between companies by
having people from each company working

together, i.e., collocated.

The transfer of technology and know-
how into and out-of some classified military

programs has been a major problem, particu-
larly when one of the programs has special
restrictions and security requirements. In one

program, for example, the components for an
unclassified program were produced in a
restricted area. The restrictions even precluded
the Government's program representatives
from visiting the area to see first-hand how
their components were being made.

LESSONS LEARNED

a.

b.

c.

d°

e.

f.

Composite structures technology
requires far more interaction than
conventional aluminum structures

technology.

Structural design, certification, and
test requirements as well as materials,
processes, manufacturing, tooling,
quality control, product support, and
cost issues must be addressed and
understood from the start.

The production and operational costs
of composite structures must be
competitive with counterpart metal
structures. Weight savings are a
bonus, but cost is the driver.

The "Concurrent Engineering" ap-
proach, using small collocated
multidiscipline teams, resolves prob-
lems up front and is being used by the
majority of US aircraft companies. By
resolving problems early, the costs
and time spent on rework, modifica-
tions, and changes are reduced.

Small companies and composites
R&D organizations of large compa-
nies with engineering and production
capability located in the same facility
successfully practiced "Concurrent
Engineering" before the term was
invented.

The "Concurrent Engineering" ap-
proach enables designers to become
familiar with manufacturing and QC
technologies, capabilities, and prob-
lems, and vice versa. Designers

4



g.

h.

i.

j.

should spend time on the shop floor in

the production facility.

There is no substitute for composites
experience. Experienced engineers
and technicians are a very valuable

commodity and are a key toward
assuring program success.

Composites technology is transferred
by people working together and not
by reports, presentations, and lectures.

Problems have been caused by short-

ages of composites-experienced
people. Many companies have sent
their key people to outside tutorials
and training courses and have imple-
mented in-house composites training
courses for engineers, technicians and
production personnel. Some of the
most effective courses are taught in-
house by experienced company
design and manufacturing engineers.

Companies that have engineering and
production facilities located in the
same area generally appear to have
had fewer problems and have re-
solved problems more rapidly than
companies with facilities that are far
apart geographically.

STRUCTURAL DESIGN,

ANALYSIS, AND TEST

DESIGN AND CERTIFICATION

REQUIREMENTS

tion test programs. Some structural compo-
nents designed to meet the requirements of one

agency had to be extensively redesigned to
meet the requirements of another. As a result,

design, certification, and production costs
increased enormously, and, because the com-

posite weight savings and cost projections
were based on a different set of requirements,

the weight and performance targets for the
aircraft were not achieved, adversely affecting

aircraft capability, competitiveness and price.
Most of the government and industry people
interviewed felt that the basic requirements
should be uniform and that some of the re-

quirements cause unnecessary weight and cost
penalties to composites structures.

Twenty-two different US civil aircraft
types, which were certificated under FAR
requirements, are in service with the US Air
Force, Navy, and Army. An additional ten
foreign aircraft types, that were certificated
under country-of-origin or JAA requirements,
are in service with the US Air Force, Army,
and Coast Guard. Five of the six JPATS

contender aircraft are derivatives of foreign
trainers, and one of these has a composites

airframe. The Slingsby T-3A trainer, which
will soon enter Air Force service, is almost

entirely made from composites. A list of these
aircraft, their country of origin, and the certifi-
cating agency is given in Table 1. Except for
the AV-8 and the trainers, all the aircraft are

used for transport or as electronic surveillance
platforms. The AV-8A was essentially the
same as the British Aerospace (BAe) GR. Mk
3 Harrier and was certificated by the British

military. The AV-8B, also designated the GR.
Mk 5, was a major redesign of the AV-8A by
McDonnell Douglas and BAe and was certi-
fied to US Navy standards.

Composite structural design and certifi-
cation requirements were identified as a major
concern at twenty-eight of the thirty-five

meetings with industry and government orga-
nizations.

The differences among the design and
certification requirements for composite
structures specified by the FAA, the US Air
Force, and the US Navy, have caused major

design problems and duplication of very
expensive material and component certifica-

Certification to foreign standards is

causing some problems for the US services,
which have to decide if the original certifica-

tion procedures and tests are satisfactory by
US military standards. The standards also have
to be reviewed by the maintenance organiza-
tions, which have to inspect and repair damage
on the basis of the original civil or foreign
certification requirements.

The current FAA damage tolerance
requirements were criticized as being overly

5



US MILITARY COUNTRY OF

DESIGNATION ORIGINAL DESIGNATION ORIGIN &

CERTIFICATION

C-9A/B/C
KC-10A
C-12F
C-18A
C-20A/B
C-21A
C-22A
C-23A
VC-25A
C-26A
C-27A

C-29A
VC-137A/B
VC-137C

E-3A/B
E-6A
E-8A
E-9A
EC- ! 8B/D

F-21A
AV-8B

T-1A
T-3A
CT-39A
T-41A/C
T-43A
T-45A
T-47A

HU-25A
U-27A

HH-65A
TH-67A

McDonnell Douglas DC-9
McDonnell Douglas DC-10
Beech Super King Air 200
Boeing 707-300
Gulfstream III, IV

Learjet 35
Boeing 727-200
Shorts Sherpa
Boeing 747-200B (Air Force I)
Fairchild Metro III

Alenia G222

British Aerospace 125 Series 800
Boeing 707-135
Boeing 707-300 (Air Force I)

Boeing 707-320 (AWACS)
Boeing 707-320 (TACAMO)
Boeing 707-320 (JSTARS)
de Havil!and DHC-8 Dash 8M

Boeing 707-320

IAI Kfir (Dassault Mirage)

US/FAA
US/FAA
US/FAA
US/FAA
US/FAA
US/FAA
US/'FAA
UK/CAA
US/FAA
US/FAA

Italy, MIL
UK/CAA
US/FAA
US/FAA

US/FAA
US/FAA
US/FAA
Canada/TC
US/FAA

Israel/France

British Aerospace Harrier (AV-8A)

Beech 400T (Mitsubishi Diamond)
Slingsby T67M260 Firefly
Rockwell Sabreliner
Cessna 172

Boeing 737-200
British Aerospace Hawk
Cessna Citation S/II

Dassault Falcon 20

Cessna 208 Caravan

Aerospatiale Dauphin 2
Bell 206-B3

UK/US, MIL

US/Japan/FAA
UK/CAA
US/FAA
US/FAA
US/FAA
UK/US, MIL
US/FAA

France

US/FAA

France
US/FAA

Table 1.- Civil aircraft in use by US military and the certificating country and agency.

severe by many of the people interviewed.

These requirements specify that a structure
with barely visible impact damage (BVID)

must be capable of sustaining design ultimate

flight loads in the most adverse temperature/
humidity environment throughout the life of

the aircraft. (Federal Aviation Regulations

(FAR); FAA Advisory Circular, 1984) Pres-

surized fuselages with BVID must have
sufficient residual strength to withstand the

combined effects of critical ultimate flight

6

loads in combination with normal operating

internal pressure and external aerodynamic

pressure. Residual strength must be established

by component or subcomponent tests, or by

analysis supported by test evidence. The

effects of temperature, humidity, and other

environmental factors that may result in

material property degradation must be ad-

dressed in the damage tolerance evaluation

(FAA Advisory Circular, 1984; Evaluation of

Composite Structure, Fed Reg, 1986).



The design maneuver limit load factors
for Commercial Transport Category Airplanes

weighing more than 50,000 Ib are +2.5/-1.0g.
(FAR Part 25.337) The current FAA require-
ments call for BVID residual strength capabil-

ity of load factors of +3.75/- 1.5g with BVID.
Airbus certification requirements call for only
limit load (+2.5/-1.0g) residual strength capa-

bility.

has also barred the use of polyimide- and
bismaleimide-matrix materials.

The three agencies also have different
requirements for simulation of low energy

impact damage and different test procedures to
determine the fatigue strength and residual

strength of components or the full-scale
fatigue test article.

Boeing Commercial Airplane Group
(Dost, 1993) discussed a revised approach that
is similar to metal practices and USAF re-
quirements for composites. The current FAA

requirements are shown in Figure 2. An
approach proposed by Boeing is outlined on
Figure 3. Boeing suggests reducing the design
load requirement for non-visible and barely-
visible impact damage to a level between limit
and ultimate that would account for "Real

World" damage scenarios and limit load
conditions based on the maximum load per
fleet lifetime. The current requirements for

easily visible damage would not be changed.

The US Air Force damage tolerance

requirements specify that the structure must be
capable of carrying the maximum load the
member might encounter during a specified

inspection interval or, for noninspectable
structure, during a lifetime. This load (Pxx) is
defined as a function of the specific degree of

inspectability in a given inspection interval.
(Damage Tolerance Criteria, AFSG-87221 A)
The changes to the commercial aircraft re-

quirements recommended by Boeing would
bring them into line with the USAF require-
ments.

The US Navy composite requirements
are, in some respects, more severe than either
the FAA or the USAF requirements. As an
example, the structure must withstand design
ultimate load, adjusted for the effects of
environment and material variability, with

clearly visible damage. The Navy specifies no
yielding at ultimate load (versus limit load and
maximum expected flight load, respectively
for FAA and USAF requirements).

The Navy requirements currently pro-
hibit use of honeycomb sandwich structure and
aramid/epoxy. Because of corrosion caused by
a mix of aviation fuel and salt water, the Navy

STRUCTURAL DESIGN

General. - The most successful compos-
ite development programs have invariably
used an integrated engineering team approach
to design, development, and production inte-
gration. The team is usually structured to
include personnel from design, analysis,
materials processing, tool design, production
engineering, quality control, and, in some
instances, costing. Ideally, the team is collo-
cated to facilitate communication.

The integrated team approach of itself
cannot guarantee success. The team members
must possess the skills and experience needed
to work with composites. Personnel with
limited experience will not be able to cope
with the complexities inherent in composites
design and application.

In the past, the personnel involved in the

design of composites for a production program
often came from the R&D elements of the

organization. This should not be considered
unusual because the R&D organizations were
the first to work with and develop an under-
standing of composites. There is also benefit in
having engineering personnel cycle between
product development programs and R&D
because exposure to the "real world" of prod-
uct development makes them more cognizant
of the constraints and specific requirements of
a production environment and could help
engineers formulate more focused reseai'ch
efforts.

Another mark of most successful pro-

grams is the implementation of a building-
block approach to development. This approach
implies that the design, fabrication, and test of
major structural elements are taken in steps so
that potential problems with the design, either
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structurallyor from thefabricationperspec-
tive, areuncoveredat theearliesttime and
with thesmallestinvestmentin toolingandtest
complexity.Each"block" buildson theknowl-
edgegainedin thepreviousstep.Program
managementmustunderstandthatcomposites
areacomplexmaterialsystemandtheir
effectiveuseis not a straight-forwardand
simpleengineeringeffort. New applications
will requiremoretimeandeffort thanconven-
tionalstructures.Thetime andotherresources
requiredto implementabuilding-blockap-
proachmustbeapartof theprogramplan.The
building-blockapproachhasbeenshownto
reducerisksand,in the long run,keepoverall
programcoststo aminimum.

Theadvantagesof usingcompositeshas
beendemonstratedin manyprograms.Success
has,in somecases,led to overenthusiasm.
Designersbenton makingthemostuseof
compositesin a newdesignoftentry to use
compositeswherethereis nobenefitto doing
so.Oneexampleis to usecompositesfor many
smallpartssuchasclips andbracketswhen
metalswoulddo thejob effectivelyat much
lowercostandlittle, if any,additionalweight.
Compositesshouldbeusedonly wherecareful
andthoroughstudiesshowaclearbenefit.The
studiesmustincludetheavailabilityandcost
of facilities,thecompany'sexperienceand
ability to implementtheir ideas,andthe
tradeoffof benefitwith risk.

Designersoftenoveroptimizetheir
designsin aneffort to obtainmaximumweight
savings.Weight savingsshouldnotbemea-
suredonapartby partbasisbutshouldbe
assessedglobally. Highly optimizedstructures
donot leaveroomto accountfor manufactur-
ing discrepancies,inherentdefects,andinevi-
tableloadincreases.As programrequirements
changeor difficulties arise,designersshould
haveanacceptablefall-backposition.To the
greatestextentpossible,thedesignermust
understandall of therequirementsatthestart
of thepreliminarydesign.Theseincludethe
customer'sspecificrequirementsandor
constraints.Thecustomermust,afterall, be
willing to acceptadvancedcompositesand
havetheinfrastructureto supportthem in
serviceincluding inspection,maintenance,and
repaircapabilities.

Designmanualsanddocumenteddesign
practicesarebeginningto emergefor compos-
itesbut havenotreachedalevelcomparableto
thatof conventionalmetalstructure.The
problemsencounteredon aprogramandtheir
resolutionsareoftennot well documented.
Companiesrely heavilyon theexperienceand
expertiseof the individualsassignedto a
program.As thenumberof newaircraft
developmentprogramsgetsfewerandmore
protracted,companieshaveamoredifficult
timemaintainingtheir technicalbase.Experi-
enceononetypeof aircraftmaynotnecessar-
ily transferto anothertype.For example,
helicoptermanufacturershaveexperienced
problemstransferringtheir technologyand
experienceto fixed-wing aircraft.Thedesign
andanalysistoolsavailableareadequatefor
today'srequirements.However,thetoolsmust
beappliedwith athoroughunderstandingof
compositebehaviorsothatcritical areasof the
structurereceiveadequateanalyses.

Compositedesignshaveoccasionally
beencriticizedfor appearingas"black alumi-
num."Suchcriticism is notalwaysvalid.
Certainstructuralconfigurationsareappropri-
atefor certaintypesof loadingregardlessof
thematerialused.Ontheotherhand,aone-
for-onereplacementof aluminumelements
with compositesisprobablyinappropriate.
Eachapplicationmustbeevaluatedandthe
selectionof materialandstructuralconfigura-
tion shouldalwaysbebasedonsoundtrade-off
studiesbasedonaknowledgeandunderstand-
ing of how thematerialwill functionin each
particularapplication.

Programmanagementassignedto a
majordevelopmenteffort involving composite
structuresshouldhavecompositesexperience.
Managementmustbesensitiveto the lessons
learnedin thepastin orderto avoidrepeating
pastmistakes.Programschedulesmustbe
realistic.New applicationsof compositeswill
undoubtedlycausesomesurprises.Mostall
canbeovercomesuccessfullyby applyingthe
practicesthathaveprovensuccessfulin the
past.Theseincludean integrateddesign-
developmentteamanda building-blockap-
proachto validationandcertification.

Laminate Design. - Although the
tailorability of composites is generally re-

9



gardedasoneof theirprincipal attributes,
desi.gnershavehadconsiderablesuccessby
stayingwith basicfamiliesof laminatesfor
mostapplications.Simplegroundrulesinclude
theuseof abasic0/90/-+45laminatewith at
least10%of thetotalplies in eachdirection.
Somealsopreferthattherebenomorethan
50%of theplies in anyonedirection.At
pointsof loador geometricdiscontinuity,the
numberof plies in theprincipal loaddirection
canbereducedto "soften" thestructureand
reducethestressconcentrationfactors.The
optimizationof the laminateshouldconsider
producibility,particularlyif anautomated
processsuchastow placementwill beused.

controlpersonnelin thedesignprocesscannot
beoveremphasized.All thedisciplinesin-
volvedmustworkconcurrentlyto evolvea
designthatwill meetthegoalsfor schedule,
weight,andcost.Complexdesignsshould
alwaysbechallenged.Simplificationof the
designcanoftenleadto significantcostsav-
ingswith little effectof weight.

Companieshavefoundthattheproblems
invariablyoccurduringtheearlyphaseof
production.Theseproblemscanbemore
successfullyresolvedif designengineersare
availableatthemanufacturingfacility during
thefirst two to threemonthsof production.

In general,fiber dominatedply designs,
thatis, designswhereinthefibersarealigned
with theprinciple loaddirections,haveworked
well. Useof thefiber-controlled0/90/_+45
family makeslaminatedesignandanalysis
essentiallyindependentof matrix strengthand
alsofacilitateslayupandin-processinspection.
Furthermore,keepingthereinforcementflat
reducestheout-of-planeloadsthatcancause
delaminationfailures.Hybrid laminates,viz.,
aramid-carbonmixtures,havebeentrouble-
somein someapplicationsbecauseof the
fibers' thermalmismatchwhichcancause
matrixcracking.

Detail Design. - The building block
approach is an excellent method for develop-
ing and validating the details of the design.
The final design must be validated at full
scale, however. In all aspects of the design, but
in particular the design details, the designer
must pay attention to producibility and dimen-
sional tolerance requirements. Specifying
unnecessarily restrictive tolerances can drive
up costs. On the other hand, maintaining close
dimensional tolerances at mating surfaces can
keep assembly costs down and avoid the
potential for assembly-induced damage. A
good working knowledge of manufacturing
processes or, if possible, experience in a
manufacturing facility would not only be
helpful to designers but may be essential if the
costs of composites are to be competitive with
metals. The design and the method of con-
struction must be worked together, particularly

if some automated production methods are
being considered. Again, the importance of the
input of manufacturing, tooling, and quality
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Although it is well known that out-of-

plane loads should be avoided in composite
design, failures still occur because of the

inadvertent introduction of out-of-plane loads.
Joints, structural discontinuities, and other
areas of stress concentration must receive

careful attention. Bolted joints are the pre-
ferred method for the introduction of out-of-

plane loads.

Generally, joints will be the critical
element affecting component strength. The
designer must rely on a combination of de-
tailed structural analysis and full-size element
tests to verify the design. Because joint
strength is dependent on actual laminate
thicknesses and bolt size and placement,
subscale tests cannot be used to verify a joint
design.

Overall Design. - Composites have
always held the potential for reducing the part
count through the cocuring of large assem-
blies, and a number of companies have had
success with designs that minimize the number
of parts that have to be joined in separate
assembly operations. The larger the part,
however, the more likely that the part will

become complex and consequently the tooling
may also become complex and costly. The
benefits of reduced assembly costs must be
weighed against the possible increase in
tooling costs and the risks involved in curing
larger parts.

Early in the development of composites,
designers tended to avoid post-buckled, stiff-
ened skin designs. Experience has since shown



thatsuchdesignscanbeusedsuccessfullyand
provideaviablealternativeto honeycomb
sandwichconstruction..

During thecourseof adevelopment
program,thedesignloadsoften increaseand
theloadspectrummaybecomemoresevere.
Thestructuraldesignerandthetool designer
shouldconsider,early on,how increasedloads
will beaccommodated.

Mostcompaniesandgovernmentpro-
gramofficesfavor designsthat avoidtheuse
of secondarybonding.Local disbondshave
occurredin servicein secondarilybonded
adhesivejoints. Cocuringandcobonding,
however,appearto work satisfactorily.

Honeycombsandwichstructureshave
hadthemostdisbondproblemsin service.
Becauseof theseproblems,theNavy,begin-
ningin 1984,imposedabanon theuseof
honeycombstructuresonNavy aircraft.The
Air Forcehasalsohadproblemswith honey-
combstructureson their aircraft.Often,for-
eignobjectdamage(FOD) or damageinduced
duringmaintenancewill produceasitefor
wateringress.During subsequenthigh speed
flight athigh altitudes,thebuild upof vapor
pressurewill causeskin-coredisbonds.Freeze-
thawcyclescaninducedamageaswell. The
recurringproblemswith honeycombstructure
hasled onetransportaircraft manufacturerto
avoidits useonnew aircraftandto express
seriousreservationsaboutits suitability for use
on theHigh SpeedCivil Transport(HSCT).

Theinspectabilityof structures,both
duringproductionandin service,mustbe
consideredin thedesign.Designingfor
inspectabilityincludesconsiderationof the
typeof equipmentthat will beavailableto the
field inspectionunits.As notedabove,large
monolithicstructureswith reducedpartcount
aredesirable.This approachmustbe tempered
with theneedto inspectcritical interfacesthat
couldgetburiedwithin thestructure.Remov-
ablefastenersshouldbeusedin areaswhere
accessto the interior is neededfor inspection.

STRUCTURALANALYSIS

Finite Element Analyses (FEA) have

been applied successfully to most composite
designs. In regions of high stress gradients,
such as around cut-outs and at ply and stiffener
drop-offs, a fine mesh must be used. Except at
cut-outs and discontinuities, general laminate
theory and the modeling of the laminate as an
orthotropic plate are satisfactory. At
discontinuities, out-of-plane loads are intro-
duced and a 3-dimensional FEA must be used.

The problem in many cases has been the
identification of a discontinuity. A number of
major structural failures have occurred during
development programs because the discontinu-
ity was not adequately addressed in the analy-
sis. In most all cases, a post-test analysis of the
critical region showed clearly the inadequacy
of the design and guided a satisfactory rede-
sign. Generally, detailed analyses should be
performed whenever there is an abrupt change

in load path or the load in the composite is
being taken out or introduced through a fitting.
Several designers noted the importance of

designing and analyzing the details first and
then filling in the design of the spaces be-
tween.

Although teaming has become very
commonplace in today's environment, prob-
lems can and often do arise when companies
working on the same project are using differ-

ent analysis tools. An obvious solution is for
all team partners to use the same analysis
tools. But, difficulties can still arise when team
members are not familiar with the analysis

tools imposed by the team leader or when team
members do not want to share their "propri-

etary" codes. When planning joint programs,
the planners must be aware of the need for
coordination of analytical activities as well as
providing for the usual physical interface
controls.

STRUCTURAL TEST

Several techniques and criteria are
currently in use for dealing with the effects of
low energy impact damage (LEID) and the
definition and generation of barely visible

impact damage (BVID). Several organizations
felt that techniques for generating damage,
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definingBVID, andteststo evaluatethe
effectsof impactdamageshouldbestandard-
ized.Standardizationwouldeliminateconfu-
sion,permitdirectcomparisonof testdata,and
reducecosts.

As notedabove,subscalecomponents
arenotusefulfor evaluatingjoint designs.The
evaluationof designdetailsandthedemonstra-
tion of damagetoleranceshouldalsobedone
at full size.

Designallowablesareusuallyconsidered
amaterialpropertydeterminedby coupon
tests.Theapparentdesignallowablescanbe
affectedby structuralconfigurationandappli-
cation.In somecases,generatingdesign
allowablesfrom afew selectedcomponent
testscanbemorerealisticandcosteffective
thanrunninghundredsof coupontests.

As discussedearlier,awell plannedtest
programis an integralpartof thebuilding-
blockapproachto development.Certification
testsshouldbeapartof the initial plan.Expe-
riencehasshownthatcompositesdonot
presentahigh technicalrisk whentheprogram
includesa 2-3yearbuilding-blockvalidation
program.All of thestructureshouldbestatic
tested.Whenthestructuresatisfiesall the
statictestconditions,experiencehasshown
thatfatiguewill not beaproblem.Techniques
for takinginto accounttheeffectsof moisture,
temperature,impactdamage,etc.during the
statictestingremainsa problem.An approach
that atleastonecompanyhasfoundsuccessful
is toevaluatetheeffectsof temperatureand
moistureatthecouponandsubcomponent
level andmakecomparisonsbetweenpre-
dictedandmeasuredperformance.Theseratios
arethenappliedin thedesignof thefull-scale
componentto providethemarginsneeded.

COST CONSIDERATIONS IN DESIGN

There was nearly universal agreement
that costs and not weight savings have become
the major driver in the application of advanced
composites. For some military applications,
improved performance, including stealth, can
still dictate the need for composites. But,
aff, ordability remains a major design con-
straint, even for military aircraft.
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The need to achieve both weight savings
and retain affordability presents a challenge to

the designer. The real cost of a weight-opti-
mized structure is often much higher than
estimated. Production costs, and particularly
assembly costs, should drive the design. In
order to achieve a cost-effective design, an

integrated design and manufacturing team is
essential. Often, slight changes in design can
lead to part simplification and reduced manu-

facturing costs with little or no weight penalty.
Designers must understand the ramifications

of design details on producibility and be
prepared to explore non-traditional approaches
in order to reduce costs. As noted in the

section on Assembly, monolithic, integral
structures can be used to reduce part count and
assembly costs. Part commonality is another

effective method for reducing costs. Often
slight changes in design can lead to signifi-
cantly more part commonality. Designers must
understand that not everything on a so-called

composite airplane needs to made of compos-
ites. Small parts, for example, can be very
expensive when made of composites by
conventional methods and metal may be the
most cost-effective choice.

The high material costs associated with
composites, about 25 times that of aluminum,
means that manufacturers need to minimize

the amount of scrap. Again, close coordination
of design and manufacturing and an under-
standing of the manufacturing methods avail-
able can heIp to minimize scrap. In a produc-
tion environment, for example, one manufac-
turer was able to maintain a buy-to-fly ratio of
about 1.1. High material costs are one reason
thermoplastics have not been used in any great
quantity. Also, the compressive strength of
thermoplastic composites has not been as good
as that of thermosets. Except in some special
applications, the manufacturing cost savings
projected for thermoplastics have not been
realized.

New US and foreign tactical aircraft are
making extensive use of composites for both
primary and secondary structures. For these
newer aircraft, composites make up about 20
to 35% of the airframe weight. Regardless of
the type of material used for the airframe, the
costs of military aircraft are considerably
higher than those of commercial transports.



Basedoncurrentprogramcostestimates,the
fly-awaypricesof somenewermilitary aircraft
structuresrangefrom $590/kg($1300/1b)for
theMcDonnellDouglasC-17and$680/kg
($1500/Ib)for theLockheedF-22to about
$1800/kg($4000/lb)for theNorthropB-2B.
Thesepricesreflect the limited production
ratesandquantities.In contrast,thepricesof
commercialturbojetandturboproptransports
rangefrom $90-140/kg($200-300/1b).(Aero-
spaceFacts& Figures,1992-93;Hadcock,
1985,1989;McCarty, 1990;Harris,W., 1993)
Althoughit may appearthatthehighercosts
associatedwith compositesmightbeeasierto
acceptwithin currentoverallstructurecosts,
compositeswill still haveto "buy theirway"
ontotheaircraftby demonstratingimproved
performanceat anacceptablecost.

Thecostsassociatedwith assemblyof
mechanicallyattachedcompositejoints are
veryhigh andrequireclosetolerancesat
faying surfacesandrigid control of thethick-
nessesof thepartsto bejoined.Unless
matchedtoolingor machiningis usedto match
faying surfaces,liquid and/orstructuralshim-
ming mustbeusedto preventthe introduction
of out-of-planeloadsin thecompositepartsat
thejoint duringassembly.Thehighcostsof
specialfasteners,their installation,thecontrol,
inspectionandmeasurementof thethicknesses
of thecompositeparts(toassureproperfas-
tenerselection),andshimmingaretheprimary
reasonfor minimizing mechanicaljoints in the
design.Thesecostissuesaredescribedin more
detail in thesectiononAssembly.

Anotherelementof overallcostthatis
not alwaysapparentto thedesigneris thecost
of in-servicesupport.Inspectionandrepair
personnelmustalsobeapartof theoverall
designteamto helpassurethatneitherthe
weightnor thecostof maintenanceandrepair
negatetheassumedbenefitsof the initial
weightsavings.

At present,theexperienceof the inte-
grateddesignteamisthebesttool availablefor
keepingcostsdown.Tools thatcanhelpthe
designeroptimizeon costsaswell asweight
wouldbeausefuladditionto designtechnol-
ogy.

DESIGN R&D NEEDS

Opinions on current R&D needs were
quite varied. Some felt that most R&D pro-
grams contributed little to the real problems
encountered in the application of composites.
They felt that most research was unfocused
and failed to address the problems and issues
associated with production development
programs. Some felt that research, rather than
focusing on long range needs, should always
be tied to a development program and focus on
near-term (3 to 5 year) needs and solutions.
Others stated that a R&D program should
concentrate resources on full-scale compo-
nents with real design features rather than on
coupon/design allowables programs.

Because fewer resources are going into
new (particularly, military) aircraft develop-
ment, the present time was viewed by some as
a good time to concentrate R&D on the devel-
opment and improvement of overall compos-
ites technology. This development would
include integration of design concepts, mate-
rial forms, and manufacturing methods.

Some time has passed since a forum has
been held involving Government, Industry,
and Academia to specifically discuss present
and future R&D needs. One of the first forums

was Project Forecast sponsored primarily by
the Air Force and held in the early 1960's.
This was followed in 1972 by Project Recast
which served as a guide for composites re-

search through the 1970's. The most recent
forum, conducted under the auspices of the
National Research Council, was chaired by
Professor James W. Mar and was completed in
about 1986. A major recommendation of the
committee was for NASA to institute a bold

new initiative in composites aimed at the
development of technology that would reduce
the cost of composites. The present Advanced
Composites Technology (ACT) Program was a
direct result of the Committee's recommenda-

tions. It is now appropriate to once again
assess the status of composites, the near-term
outlook, and future R&D needs. The present
interest in high speed transports and results of
studies that indicate the need for composites to
achieve the weight targets essential for eco-
nomic viability are more reasons to address the

most appropriate course for composites R&D.
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LESSONS LEARNED
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a.

b.

c.

d.

e.

f°

g.

h.

Design and certification requirements
for composite structures are generally
more conservative than for metal

structures.

There are no reported aircraft acci-
dents involving failure of primary or
safety-of-flight composite structure.

Design and certification of composite
structures are expensive and costs are
much higher than for metal structures.
The effort and costs associated with

design and certification have often
been underestimated.

All design and certification require-
ments must be thoroughly evaluated
and understood at the start of the

program. Certification requirements
of the FAA and the various services

can differ and require different ap-
proaches.

Design and certification test data
generated under a military aircraft
program has only rarely been transfer-

able to a commercial aircraft program
or a program sponsored by another
military department and vice versa.
This practice has resulted in consider-
able duplication of effort.

Successful programs have made
effective use of integrated develop-
ment teams that include personnel
experienced in design, analysis,

materials and processes, tooling,
quality control, production, and cost

analysis.

Experience gained in R&D programs
does not readily transfer to production
unless the people with the R&D
experience participate actively in the
production development.

Successful programs have used a
building-block approach to develop-

ment. Program managers with prior
composites experience usually under-
stand the necessity of realistic sched-

i.

j.

k.

m.

n.

ules that allow a systematic develop-
ment effort.

The use of a basic laminate family
containing 0/90/+45 plies with a
minimum of 10% of the plies in each
direction is well suited to most appli-
cations, generally assures fiber domi-

nated laminate properties, and simpli-
fies layup and inspection.

The number of mechanical joints
should be minimized by utilizing
large cocured or cobonded subassem-
blies. Mechanical joints should be
restricted to attachment of metal

fittings and situations where assembly
or access is impractical using alterna-
tive approaches (see also, the section
on Assembly).

Large, cocured assemblies reduce part
count and assembly costs. If the
cocured assembly requires overly
complex tooling, however, the poten-
tial cost savings from low part count
can be easily negated. Producibility
must be a key consideration in the
design.

Structural designs and the associated
tooling should be able to accommo-

date design changes associated with
the inevitable increases in design
loads.

Standardization of techniques for
inducing impact damage and assess-
ing its effects would eliminate confu-

sion and permit direct comparison of
test data and transfer of results to

other programs.

Designing for producibility is gener-
ally more cost effective than optimi-
zation for weight savings.



MATERIALS & PROCESSES

MATERIALS

Nearly all composites engineers hold
strong views on material selection and proper-
ties determination and how these have influ-

enced composite structures development. Most
agreed that a unified approach was needed for
determining material properties. Earlier efforts

by NASA and continuing coordination of test
methods by SACMA are beneficial and permit
direct comparison of test data. Many would
like to see uniform material specifications and
standards for a few selected material systems
and suggested the Government could take the
lead in defining these. There were others who
believed just as adamantly that standard

specifications were not needed. Companies
add to the problems of myriad specifications
by writing their own and asking materials
suppliers to show that their product will meet
those specifications. The cost to qualify a new
material and generate design allowables can be
as much as $3-5 million.

The current Air Force Manufacturing

2005 program is looking at the potential cost
savings in using commercial specifications for
many of the systems they procure including
composites. Other efforts at standardization of
materials and processing specifications are
under way through the auspices of the Aircraft
Industries Association (AIA) and the Great

Lakes Composites Consortium. Because of the

large number of material systems in use,
standardization of repair materials would
benefit the user by reducing the number of
expensive material systems that have to be
stored and periodically monitored to assure
their viability. Out of date materials must often
be scrapped, thus adding to the cost of com-

posite maintenance. As more and more com-
posites go into service, the problem of main-
taining replacement materials for repair and
rebuilding of older structures is of increasing
concern. Generic composite materials that can
be used with a broad range of composite

materials are urgently needed for repair.

Development risks can be reduced by not
locking into a single fiber/matrix system,
particularly if the fiber/matrix system is

relatively new. Preferably two material sys-
tems that will meet all requirements should be
available at the start of a product development
program. Unduly high risks are incurred if a
materials development program is undertaken
in conjunction with the product development.
If some materials development is underway
during the preliminary phases of a program,
there should be a specific cut-off point early in
the program so that design can proceed with
known (and not projected) performance val-
ues.

The Navy has had bad experience with

polyimide- and bismaleimide-matrix systems
in service. The combination of aviation fuel

and salt environment degrades the matrix
material. The Navy now considers these
materials unacceptable on Navy aircraft.
Bismaleimides are proposed for use on the
F-22 in areas where there is no contact with

aluminum and moisture is not a problem. The
need to isolate carbon fiber composites from
aluminum or steel because of galvanic interac-
tion has been long recognized and has been
dealt with effectively by using an adhesive

layer and/or a thin glass-fiber ply at faying
surfaces.

Continuing concern over the effects of

low energy impact damage has led to the
development of toughened epoxy systems, and
there is a strong tendency for designers to use
the latest and "best" material systems. In many
instances, an untoughened system can do the
job reliably at a much lower cost than a tough-
ened system. For example, the Navy has had
good in-service experience with a well-charac-
terized, untoughened epoxy system that has
been on the market for many years.

Material costs can be a significant por-
tion of overall component costs. In addition to
the cost of the material alone, the part design
along with the method of construction can
affect the amount of scrap and the buy-to-fly
ratio. At a buy-to-fly ratio of 2:1, for example,
carbon/epoxy material purchased at $16/kg
($35/Ib) is actually costing $32/kg ($70/1b) on

the part, not including processing and lay-up
costs. Buy-to-fly ratios ranging from 1.1:1 to
2.2:1 were quoted by interviewees for ongoing
production programs. With the cost of alumi-
num at less than $2.3/kg ($5/11o) and emerging
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advancedalloyssuchasaluminum-lithium
projectedto cost$5 -$7/kg($10-15/lb),the
costof compositematerialis still a significant
factorin their effectiveapplication.Costs
associatedwith incomingmaterialinspection,
handling,andstoragearehigherfor compos-
itesthanfor metals.Inspectionsdoneby the
materialsupplier,providedtheycanbecerti-
fied to thesatisfactionof thebuyer,shouldnot
haveto be repeatedatthemanufacturing
facility. Quality control costsusuallycanbe
reducedfurtherwhenautomatedprocess
controlsareused.

Noneof thepeopleinterviewedwho
havehadexperiencewith thermoplasticswere
optimisticabouttheir viability for extensive
useonaircraft.Currently,with costsranging
from $55-80/kg($120-175/lb),thermoplastic-
matrixcompositesareveryexpensivecom-
paredto mostthermosets.Furthermore,prop-
erties,especiallyin compression,makethem
of questionableusefor primarystructure.
AlthoughconsiderableR&D fundinghasbeen
appliedto thedevelopmentof thermoplastics,
manyproblemsremainunresolvedandsome
questiontheefficacyof continuedGovernment
fundingfor their development.

Materialselectionis acritical elementof
adevelopmentprogramandselectionmustbe
basedonathoroughanalysisthatincludes
considerationof performance,cost,schedule,
andrisk.

PROCESSES

Processing depends on material, configu-
ration, tooling, and the fabrication method
being used. There are, however, some general
comments that can be made and would apply
to most materials and applications.

Process controls must serve two pur-
poses: they must assure consistent properties
and also provide dimensional control on
thickness and overall geometry. The process
controls must be compatible with the tooling.
Tool design can affect heat-up rates, for
example, and dictate the extent to which
temperature can be controlled. Materials that

permit a broad processing window can allevi-
ate some of these problems, and also problems
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associated with batch processing various parts
in an autoclave.

Several techniques have been used
successfully to control part thickness and
overall part quality. These include:

1. Material specifications that affect
resin flow during cure.

2. Improved control of resin content in
no-bleed resin systems.

3. Use of higher than normal pressure
during cure.

4. Frequent compaction cycles, particu-
larly of thick parts.

. Intermediate partial cures for thick
and/or large parts when material out-
time could be a problem.

6. Post cure of all parts.

Continuing process control and process
monitoring are required during production to
assure that neither the process nor the material

is changing. Tag-end specimens can be used to
check the processing of every part. Verifica-
tion of the process should include tests that
check the critical structural properties of a
laminate, particularly for primary structure.
Any proposed changes in processes during
production must receive careful evaluation and
validation before being approved. Experienced
process engineers must be available to work
with designers in the early phases of the
program and with manufacturing personnel
once the part starts into production. Processing
problems that occur during development and
in production can often be categorized and
related thus leading to some generic proce-
dures and solutions that can be applied on
future programs. Careful records must be kept
and thorough assessments made in order to
gain the full benefit from past experience.

Engineering drawings and Materials &
Processes specifications tend to be highly
detailed and complex. Although the detail is
necessary for thorough documentation, it is not
easy to follow during the fabrication process
on the factory floor. Several companies have



developedhandbooksthatdescribethefabrica-
tionof apart in astep-by-stepprocess.Engi-
neeringdrawingsarereplacedby several
successiveperspectiveviewsor cross-sections
of apartshowinghow eachply or elementis
to beinstalled,anddetailedmaterialspecifica-
tionsarereplacedby shortnarrativesdescrib-
ing theproceduresto be followed ateachstep
of thefabrication.An example of a fabrication
process sheet is shown in Figure 4. The de-
scriptive manual aids in the inspection process
as well as the fabrication.

A number of techniques were suggested
for reducing fabrication costs. Some of these
included:

1. Use of no-bleed prepreg and adhesive

prepreg systems.

In some cases, however, secondary

bonding might have to be used. For example,
if cocuring a large complex part with internal
tooling, some portion of the part might pur-
posely be left unbonded during the initial cure
to permit access for removal of the internal
tooling. If secondary bonding is used, great
care must be taken to assure near perfect fit-up
of the faying surfaces. Close-tolerance ma-
chining of faying surfaces may be required

prior to bonding.

In all bonding and cocuring operations,
problems such as core slippage and crushing,
skin movement, and ply wrinkling can occur.
Sometimes a two-step curing process can be
cost effective because of the significant im-

provements in quality and process repeatabil-
ity.

.

.

.

.

Automated tow placement using no-
bleed tows.

Pultrusion of constant section stiffen-

ers.

Resin injection molding (RIM) or
resin transfer molding (RTM), using
stitched or woven preforms, for

complex shapes and small parts.

Use stack gas rather than nitrogen in
autoclaves.

JOINTS AND ATTACHMENTS

As noted above, most companies favor
cocuring or cobonding over secondary bond-
ing. For example, cocuring was used very
effectively on the F-15 speed brake where
carbon/epoxy skins ranging in thickness from
4 to 72 plies were cured and adhesively
bonded to aluminum honeycomb core in a
single autoclave cycle. Cocuring has also been
used effectively for the F-14 horizontal stabi-
lizer and the F-18 wing skins where the com-

posite has been cured and bonded to stepped
titanium joint plates in a single operation.
Cobonding has also been an effective method

of bonding precured composite stiffeners or
frame sections during autoclave cure of an
uncured skin.

Just as secondary bonding requires a near

perfect interface, mechanical joints also
require very close fit-up in order to prevent
any out-of-plane loads being induced by
forcing adjoining surfaces into place during
assembly. Whenever possible, mating surfaces
should be tool surfaces to help maintain
dimensional control. If this is not possible,
either liquid shims or, if the gap is large, a
combination of precured and liquid shims,
should be used in all mechanically fastened
joints. Another approach is to cocure the
component parts with a very thin steel sheet
between the joint interfaces. The steel sheet is
removed after the parts have been cured, and
assembly completed using mechanical fasten-
ers.

LESSONS LEARNED

a.

b.

c.

Trying to conduct materials develop-
ment in conjunction with a product

development program creates undue
risks.

Because of the high cost of composite
materials, designs and manufacturing
methods must attempt to minimize

scrap.

Experienced designers and process
engineers must be readily available

during the early phases of production
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N.

COMPACT IN PLACE. EACH FULL LENGTH HAT PLY MUST BE

COMPACTED.

NOTE: GLASS BARRIER PLIES MAY BE ASSEMBLED, COMPACTED ON A

BLADDER TABLE, INSTALLED ON HATS AND COMPACTED AS A UNIT

VERIFY HAT LOCATION WITH TOOL WITH CHECK TEMPLATES. THIS WILL

INSURE THAT MANDRELS HAVE NOT MOVED.

©

A.

HAT COMPACTION

APPLY ONE PLY PERFORATED SEPARATOR FILM OVER HAT AND EXTEND

ONTO SKIN.

B. LOCATE SIDE MANDRELS.

C.

n.

m.

NOTE: ENSURE SIDE MANDRELS HAVE BEEN COVERED WITH TEFLON TAPE

AND ARE SEATED SQUARELY IN THE FLANGE/HAT RADIUS.

APPLY BREATHER AROUND PERIPHERY TO CREATE A MANIFOLD. APPLY

BREATHER STRIPS IN BAYS BETWEEN HAT LAYUPS. EXTEND FULL

WIDTH OF BAY BETWEEN HAT FLANGES.

MUD, BAG, AND SEAL. APPLY TO TOOL. APPLY VACUUM BAG OVER

PART AND SEAL TO TOOL.

VACUUM COMPACT EACH PLY FOR 5 MINUTES AT 22 INCHES HG

MINIMUM. REFERENCE FIGURE 6. CHECK THAT SIDE RUBBERS ARE

LOCATED PROPERLY AND SEATING INTO HAT RADIUS.

©

N,0br°.ther B'0C/--A rP" 
Side mandrels --_/."___ F Separator

..................................
Hat Mandrel J h Hat layup

NOTE: ASSEMBLIES -005, -007, -009, -011,

SIMULTANEOUSLY

LAYUP -500 FRAME

PLY NO. DASH NO. ORIENT MATERIAL

1 -029 0 DMS2224 W

-013 MAY BE WORKED
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Figure 4. - Example of process description from shop manual.



d,

e.

f.

to help correct production problems
and assess and validate any proposed

changes in production processes.

Handbooks that pictorially describe
the manufacturing process are easier

to interpret than engineering drawings
and result in fewer layup and process-

ing errors.

Cocuring and cobonding are preferred
over secondary bonding. Secondary
bonding requires near perfect inter-
face fit-up.

Mechanically fastened joints require
close tolerance fit-up. Liquid or
structural shimming is usually re-
quired to assure a good fit and to
avoid damage to the composite parts
during assembly.

MANUFACTURING AND

TOOLING

MANUFACTURING

General. - A recurrent theme throughout
all the discussions was the usefulness of a well

integrated design-build team. For production
programs, the team should include mostly
"generalists" with multidisciplinary experience
and training who understand the interactions

among the various disciplines and appreciate
the ramifications of decisions made at each

step of the development process. Specialists in
each field must be available to support the
overall effort, but there is no substitute for

experience.

Experience gained in an R&D program is
not easily transitioned into the production
environment unless the people who have the

experience are assigned to the production
program. Differences in personnel skills,
component scale, "real-world" interfaces,
schedules, and cost targets must be understood
and taken into consideration when production

program decisions are made based on prior
R&D experience. Many R&D programs have

not addressed manufacturing technology,
which is the key issue in affordability of
composites.

The building-block approach to develop-
ment provides the best approach to solving
design and manufacturing problems and
reducing program risk. The probability of
success is greatly increased when a program
includes the time and resources for an inte-

grated engineering, process validation, testing,
and manufacturing development program.
Manufacturing development needs to take

place at a scale that will test and validate the
concepts proposed. The use of sub-scale
components, often as a cost-saving attempt,
can prove risky and lead to erroneous conclu-
sions.

Cost has become the principal concern in

the development, application and utilization of
composites, and rightfully so. All aspects of
the manufacturing process must be considered

when determining costs. Nonrecurring costs
include tool design and fabrication; software

for automated tape-laying machines (ATMs),
tow placement machines, and nesting pro-
grams for NC cutters; and manufacturing
methods and shop instructions. Recurring costs
include composite and other material procure-
ment and waste disposal; layup, autoclave cure
and post cure; part trimming; installation of
detail parts in assembly fixtures; special
fastener procurement; subassembly; and final
assembly. Generally, labor costs are slightly
higher than material costs, but layup costs can
be reduced considerably through the use of

automation. Composite material costs are very
much higher than the costs of aluminum alloy
sheet and plate and care must be taken to
minimize composite material waste and scrap.

Simply building low-cost elements does
not guarantee low cost structures if the ele-
ments do not have the needed quality. Assem-

bly costs, cited by many as the major manufac-
turing cost element, can soar if parts fit poorly
in assembly and an excessive effort is spent in

shimming, hole preparation, and fastener
selection. A seemingly simple, minimum part

count design will not be cost effective if the
tooling becomes too complex and costly and
part layup and removal becomes difficult, time
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consuming,andrisky. Some"build-to-print"
programsintendedto fostercompetitionand
reducemanufacturingcostsdid notachieve
their goalsbecausetheoriginal designdid not
payadequateattentionto producibilityand
resultedin majormanufacturingproblems.
Manufacturingpersonnelhaveoftenprided
themselvesin their "can-do" attitudewhen
insteadtheyshouldchallengedesignersto
justify adesignthatmakesmanufacturing
difficult. Producibility is akeyelementof cost
reductionandusuallycannotbeaddressed
with thefabricationof oneor two prototypes.
A full-scaleproductionprogramis often
neededto identify andcureproducibility
problems.

Automation - As noted above, automa-
tion of the layup process can produce cost
savings. In general, however, automation is
not cost effective if production rates are low
(1 aircraft per month, for example). Also,
automation is most cost effective on larger
parts and may not be cost effective at all on
small parts. When automation is planned, the
design should be optimized for the process to
be used. The process must meet the tolerance
requirements for ply placement, or else the
design must be changed to accept the toler-
ances achievable. Again, the need for integra-
tion of all aspects of the design and the manu-
facturing process is apparent.

Incorporation of automation into the
fabrication process does not necessarily mean
that the part is automatically built to net shape
on a contoured tool. Automated methods have

been used effectively on a number of programs
to lay down flat laminates that are then
trimmed to shape and placed onto the mold
form. Good quality and repeatability has been
achieved using this process. For small parts,
automated cutting of plies from broadgoods
and manual placement on the tool may be the
most cost effective approach. Furthermore,
automated processes, because of their repeat-
ability, can often reduce quality control costs.

for hole preparation, measurement and inspec-
tion of each hole, and the cost of special
fasteners. Also, fastener grip lengths must be
based on actual thicknesses (including shims)
at the fastener location and not on nominal
thicknesses. Fasteners made of materials such
as titanium or A286 stainless steel must be

used to avoid galvanic interaction with the

carbon fibers. In spite of the potential for high
costs, mechanical fasteners generally are used
in the assembly process and are preferred over
secondary bonding. If secondary bonding is
used, enough fasteners should be used to carry
limit load without relying on the bond.

Large cocured parts reduce assembly
costs. The interfaces to other parts must be
carefully controlled, however, to avoid the out-
of-plane loads that can be induced if mis-
matched parts are forced together. Also, good
dimensional control of thickness can help
reduce assembly time and costs. Because
tolerances are more critical for composites, the
structural designers and tool designers must
know, early on, the capability of the proposed
manufacturing process to maintain dimen-
sional tolerances. If necessary, design and
tooling changes must be made to meet toler-
ance requirements. Some extra effort spent on
design andtooling can usually be recouped
through reduced assembly costs.

Shimming is commonly used to bring
mating surfaces into alignment and some
manufacturers plan for 100% liquid shimming
at final assembly. If possible, the mating
surfaces should be tool surfaces in order to

maintain the best possible dimensional control.
Most manufacturers believed that the cost of

quality tooling and dimensional control on
mating surfaces was more than offset by
reduced labor and inspection costs at assem-
bly. The close involvement of manufacturing/
assembly personnel in the design process is
essential to strike the proper balance between
design requirements and the need for

producibility.

Assembly. - Some of the discussion
presented in the section on Joints and Attach-
ments also applies to assembly. As stated
above, assembly costs can be high. Installation
of mechanical fasteners can cost as much as

$100 per fastener because of the time required

2O

TOOLING

Tooling is a critical element of the
manufacturing process. Nearly all manufactur-
ers interviewed commented on tooling and had



experienced a tooling problem at one time or
another. Tool design, including tool material
selection, must be an integral part of the

overall design process, especially with cocured
structures. Tools designed and built by another
organization without close coordination with
the design, materials and processes, and
manufacturing personnel that will ultimately
be responsible for the product can lead to
serious problems. The capability now exists to
couple the three-dimensional design of a part
to the three-dimensional definition of tooling
and include the capability to perform a finite
element analysis of the tool with thermal
effects. At the present time, even with this

coupled design capability, most manufacturers
would expect some tooling changes to occur
before or during the early phases of produc-
tion.

Manufacturers have had success with a

number of different tooling materials. Alumi-
num tools have been used successfully on

small parts, but are generally avoided for large
parts and female molds because of the thermal
expansion mismatch with CFRP. Invar is often
used for production tooling because of its
durability and low coefficient of thermal
expansion. Electroformed nickel also produces

a durable, high quality tool but is more expen-
sive than some of the other materials. Steel or

Invar tools are needed for curing high tem-
perature resin composites such as polyimides
and bismaleimides. Steel, although not as
dimensionally stable during heating and
cooling as Invar, has been used successfully in
a number of applications. A summary of some
tooling used on past and current programs is

given in Table 2.

The use of CFRP tools has been both

successful and disastrous. A key to the suc-
cessful use of CFRP tooling is to build a tool

of very high quality. Most problems have
stemmed from tools with poor surface quality
and internal porosity. Tools made from CFRP
have the obvious advantage of a coefficient of

thermal expansion that matches that of the
CFRP part. Also, the heat-up of CFRP tools is
controllable and uniform and the tools are

easily repaired. In general, CFRP tools are
lighter than metal tools and therefore easier to
handle and transport. Although the life of a
CFRP tool is probably less than that of a metal
tool, some manufacturers have made up to 300
parts on carbon/epoxy tools and as many as
1000 on carbon/bismaleimide tools. Postcuring

APPLICATION COMPONENT TOOL TYPE TOOL MATERIAL
C-17

B-2

Boeing 777

V-22

A-6

Starship

Lear Fan

F-14

Main Landing Gear Doors
Control Surfaces
Inlet Ducts

Wing Skins
Wing Substructure

OML
IML
OML

OML
OML/IML

Steel
Aluminum
Invar

CFRP
Steel and CFRP

Stabilizers

Wing
Fuselage

Wing Skins

Wing Skins
Fuselage Skins
Detail Parts

All Parts

Horizontal Stabilizer Skins

OML/IML

IML
OML

OML

OML
OML
IML

OMLFIML

IML

Invar

Invar
CFRP

Steel

CFRP
CFRP
Steel

CFRP

Steel

Table 2. Examples of moldform tooling used on some past and current programs.
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carbon/epoxy tools at 200 ° C has been found
to improve their stability and life.

The use of molded rubber and trapped
rubber tools has had limited success and those

that have used it usually would not do so

again. Rubber can be used successfully in local
areas as a pressure intensifier, such as inside
radii on stiffeners of cocured structure.

All tools require periodic inspection to
assure dimensional control. Although analyses
can be done to predict the distortion or "spring
back" of a part after it is removed from a tool,

the problem is usually solved through trial and
error methods to define tool modifications.

The "spring back" problem is generally more
pronounced on metal tools than on CFRP
tools.

The decision on whether to use inner

(1ML) or outer mold-line (OML) tooling
depends on many factors. As stated earlier,
tooling the interfaces that will later be joined

helps to maintain close dimensional tolerances
and usually simplifies assembly. Outer mold-
line tools, on the other hand, generally provide
more flexibility for design changes such as
skin thickness changes. Often the decision to
use OML tooling, particularly for parts with an
air-passage surface, is based on the feeling that
the mold surface will produce a better aerody-
namic surface. The differences between IML

and OML surfaces may be inconsequential for
the application in question and should be
challenged if overall part quality and cost
could be significantly affected.

Quality tools are essential to the produc-
tion of quality parts. If possible, production
quality tooling should be used during the
development program to validate the tooling
concepts and materials. The additional costs
that might be associated with quality tooling
are more than offset by the benefits of produc-
ing parts of consistently high quality. As one
manufacturer stated, "You can't make good

parts on bad tools."

22

LESSONS LEARNED

a.

b.

c.

d.

e,

f.

g.

h.

j.

Generalists with multidisciplinary
experience are valuable assets to a

concurrent engineering team.

R&D experience can be best trans-
ferred to a production program if the
people with the experience are as-
signed to the program.

The building block approach facili-
tates process validation and manufac-

turing development.

Most of the costs of a composite part
are associated with manufacturing.
Effective use of automated processes
can reduce both fabrication and

quality assurance costs.

Designing for producibility is essen-

tial. Assembly costs as well as part
fabrication costs must be considered

when selecting a design and manufac-
turing process.

Automation may not be cost effective
if production rates are low or part
sizes are small.

Dimensional tolerances are more

critical in composites than in metals.
Dimensional control of mating sur-
faces can reduce assembly costs and
avoid damage to parts during assem-
bly.

Selection of tool material is depen-
dent on part size and configuration,
production rate and quantity, and
company experience.

Tools often require modifications.
Tool designers should anticipate the
need to modify tools to adjust for part
springback, ease part removal, or
maintain dimensional control of
critical interfaces.

Quality tools are essential to the
production of quality parts and a cost
effective element of low-cost produc-
tion.



QUALITY CONTROL NONDESTRUCTIVE INSPECTION

GENERAL

Currently, costs associated with quality

control (QC) for composites are much higher
than for metal structures. The costs can range

from 15-40% of the manufacturing costs with
the higher rates associated with R&D or

development programs and the lower rates
with established production programs. The
effort expended on review board actions
related to discrepancies is also higher for

composites. Much of the QC costs can be
attributed to nondestructive inspection (NDI)

of completed parts. In many programs, the
policy is to do 100% C-scan ultrasonic inspec-
tion of all parts. In addition to in-process

inspections, post-assembly inspection is
essential to verify assembly process and assure

the part has not been damaged in the assembly

process.

Techniques intended to reduce QC costs
have been implemented by some manufactur-
ers. These include:

1. Automated process controls to assure
repeatability.

2. Integrate QC with manufacture in real
time.

. Evaluate specifications to be certain
they are not unnecessarily restrictive.
Relax on controls that have no direct

bearing on part quality.

. Review past Materials Review Board
(MRB) actions to see if disposition
could have made with out board

review. Alter criteria as appropriate.

5. Assure that QC issues are considered
as a part of design and producibility.

. Zone the structure based on structural

criticality and key the sensitivity or
degree of inspection to the structural
requirements.

Ultrasonic C-scan is the most commonly
used NDI technique. Other techniques, includ-

ing X-ray, shearography, and thermography,
are used to a lesser extent or in special cases
where C-scan is not sufficient. The detection

of foreign materials that can find their way
into a layup may require more than one NDI
technique. The techniques currently in use
require considerable manual interpretation of
the results, usually by an experienced NDI
engineer. The use of automation and expert
systems in the evaluation of NDI records could
have some cost saving potential.

EFFECTS OF DEFECTS

Programs to establish the effects of

typical manufacturing defects should be
instituted early in the development program.
The program should define QC and NDI
accept/reject criteria. Often the components
made during the early phases of the program,
before all procedures, processes, and tooling
have been fine tuned, will contain defects.
These articles should be tested to establish

boundaries on acceptable defects.

LESSONS LEARNED

a. Automated processes can help to
reduce QC costs.

b. Focus inspection and controls on
aspects of the process and part that
have a direct bearing on part quality
and performance.

c. Determine and understand the effects

of defects on part performance.
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SUPPORTABILITY

GENERAL

During the course of this study, the
individuals visited and the discussions held

focused mainly on the design and manufactur-

ing aspects of composite structures. At the
time of the study, NASA personnel were
visiting airline operators in an effort to obtain
their views and concerns about the application
of composites on commercial aircraft. Results
of those discussions are included in a paper by
Harris (Harris, C., 1993).

As shown in the list of facilities and

individuals visited, two military logistics
centers were included in our visits. Just as the

comments of manufacturers and program
office personnel were not specifically limited
to design and manufacture, comments from
logistics personnel pertaining to design and
manufacturing have been included in the

. appropriate sections. The following discussion
-- combines information from all sources, not

just logistics centers.

Civil and military aircraft must be re-
painted at frequent intervals. Paint stripping is
a special problem when composites are present
since many commonly used solvents can
damage epoxy matrices. For example, repair of
a Boeing 767 CFRP rudder that was damaged
during paint stripping was reported to cost
$99,000 (Harris, C., 1993). Aircraft manufac-
turers and repair depots are moving towards
painting with water-based paints and paint
stripping by blasting with polyethylene beads.

IN-SERVICE DAMAGE & REPAIR

Service experience with composite
primary and safety-of-flight structures has
been very positive: no aircraft have been lost
due to failure of composite structure. How-
ever, secondary composite components are

being damaged repeatedly in airline and
military service. Much of the observed damage
occurs during aircraft servicing and mainte-
nance that may be unrelated to the composite
part (Harris, C., 1993; Donnellan, 1991).
Many parts can be repaired, but the cost and
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time required for repair is much higher and
longer than needed to repair similar damaged
metal components. The extent and type of
damage must be defined using NDT tech-
niques. Damaged structure must then be
removed and prepared for repair. After the
repair has been completed, it must again be
inspected using NDI. Repair prepreg and
adhesive materials are expensive. Many
different materials must be stocked that have

to stored in refrigerators or freezers and have a
short shelf life. Often, these materials cannot

be procured in small quantities and much of
the repair material must be scrapped when
shelf life is exceeded. Special approved fasten-
ers and spare parts are also very expensive and
add to the cost of repair.

In addition to composite control surfaces
(rudders, elevators, spoilers, and flaps) being
used on Boeing's 757,767, and 737-300,
Boeing's new model 777 will have composite
horizontal and vertical stabilizers and floor

beams. The 777 is expected to be ready for
flight in 1994. On the other hand, Boeing plans
to use fewer composite structures on its new
derivative 737 (737-X) than it has on the 737-
300. The new 737 is aimed at the small airline

market and typically the smaller operators will
not have the composite maintenance and repair
capabilities that the larger carriers have devel-
oped.

Aluminum honeycomb (H/C) sandwich

construction has caused major problems on Air
Force and Navy aircraft because of moisture
ingress, core corrosion, and in the case of
supersonic aircraft, debonding of the skin-to-

core adhesive due to pressure build-up in the
core after moisture ingestion. Stabilizers and
control surfaces have had to be disassembled

and rebuilt after the core has been replaced
with corrosion resistarit aluminum core. The

Navy has prohibited use of any H/C sandwich

components on the V-22, F/A- 18E/F and all
other new aircraft types. (Donnellan, 1991 )

Composite components on Navy aircraft

have performed welt in service, and most of
the damage has been on secondary structural
components as a result of handling or manu-
facturing discrepancies. There have been some
critical shortfalls for repair technology R&D
and development of t20°C (250°F) repair



materialsandspecialrepairequipment,includ-
ing NDI. Therehavealsobeensomeproblems
in identifyingtheextentandeffectsof heat
damageanddevelopingrepairconceptsfor
heat-damagedcompositestructure,suchasthe
inboardflapof theAV-8B. (Donnellan,1991)

Operatorswould like to havemore
engineeringandmanufacturinginformation
aboutspecificcomponentsaswell asfactory
rework,repairsandinspectionrecords.
Manufacturer'sStandardRepairManuals
(SRM)havebeencriticized asbeinginad-
equateandmostrepairsfall outsideSRM
guidelines.

LESSONSLEARNED

a. Supportability has not been ad-
equately addressed during design.
Composite structures must be de-
signed to be inspectable, maintainable
and repairable.

b° Most damage to composite structure
occurs during assembly or routine
maintenance of the aircraft.

c. Repair costs are much higher than for
metal structures.

d. Improved SRMs, engineering infor-
mation, and MRB records are needed
for in-service maintenance and repair.

e. Special long-life/low-temperature
cure repair materials are required.

f. Moisture ingestion and aluminum
core corrosion are recurring support-

ability problems for honeycomb
structures.

CONCLUSIONS

AND RECOMMENDATIONS

Although composites technology has
made great advances over the past 30 years,
the effective application of composites to
aircraft is still a complex problem that requires

experienced personnel with special knowl-
edge. All disciplines involved in the develop-
ment process must work together in real time
to minimize risk and assure total product

quality and performance at acceptable costs.
The most successful development programs
have made effective use of integrated, collo-
cated, concurrent engineering teams. The

composition of the team should represent
design, analysis, materials and processes,
tooling, manufacturing, quality assurance, cost
analysis, and product support. Ideally, at least
one representative of each discipline would
have prior applicable experience in composite
structures. Program managers should under-
stand and appreciate the need for a well-
planned, systematic, development effort
wherein the design and manufacturing pro-
cesses are validated in a step-by-step or
"building block" approach. Such an approach
will reduce program risk and is cost effective.

Producibility and supportability are the
key elements in the design of composite
structures. The design, tooling, and manufac-
turing processes must function in concert to
assure consistent high quality parts at an
acceptable cost. Quality tooling is essential to
the production of quality parts.

Not all parts are suited to composite
construction. Their use should clearly warrant
the added care that must be taken at every step

of their development..

Some of the confusion and problems
related to certification stem from differences in

requirements set by the various certificating
organizations. Much of the confusion could be
resolved if the FAA and the military services

would jointly generate a uniform set of basic
certification requirements for composite
structures. Additional special requirements
would be needed for military aircraft compos-
ite structures to meet uniquely military design
conditions such as live fire, survivability,
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catapult,arrestedlanding,etc.,but these
shouldbebasedon thegenericrequirements.

Currentconcernsin the industryabout
thevalueof genericR&D programsneedto be
addressed.An industry-governmentforum,
similar to ProjectRecastor theNational
ResearchCouncil("Mar Committee")activi-
ties,shouldbe institutedto assesstheefficacy
of today'sresearchactivitiesandhelpsetthe
directionsfor futureefforts.

An interdisciplinaryteamof experienced,
knowledgeablepeopleworking togethercan
makethetechnicalrisk of applyingcomposites
comparableto thatof anyotheradvanced
structure.Weight savingsaloneareno longer
consideredsufficientjustification for using
composites.Compositestructuresmustbecost
effective.Theweightsavedandotherin-
servicebenefits,suchasdurability or corro-
sionresistance,musthaveenoughvalueto
offsetanyaddedcoststhatmayarisefrom the
useof composites.Optimizationfor produc-
ibility andsupportabilitycansignificantly
reducethecostof compositestructureswith
little, if any,weightpenaltyor lossof struc-
tural performance.
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APPENDIX

A CHRONOLOGY OF ADVANCED COMPOSITE APPLICATIONS*

Richard N. Hadcock

RNH Associates

Hundreds of different composite aircraft
components have been designed, developed, and
produced over the past thirty years. A few of the
components have been associated with technology
development, were generic, and did not fly or go
into production. Other components were designed
to assess in-service performance and were pro-
duced in relatively small quantities. The majority
have been production components, designed from
the start in composites, that have provided up to
twenty years' of reasonably trouble-free service.

The first structural composite aircraft compo-
nents, made from glass fiber reinforced plastics
(GFRP), were introduced in the 1950-60 time
frame. These components included the fins and
rudders of the Grumman E-2A, helicopter canopy
frames, radomes, rotor blades, etc. By 1967, the
entire airframe of the small Windecker Eagle was
made from GFRP. Since then, GFRP has become

one of the standard materials for light aircraft and
lightly loaded structural components.

Many of the lessons learned in design and
fabrication of the GFRP parts were used in the
initial development of advanced composites
technology during the 1965-70 time period.

types of fiber reinforcement for access doors and
fairings.

Epoxy thermoset-matrix composites have
been used for most of the composite parts. A few
higher temperature parts have been made from
polyimide or bismaleimide thermoset-matrix
composites. Very few have been made with ther-
moplastic matrices.

Details of some of these components and
their associated successes, problems, and failures
are described in this Appendix and supplements
the information obtained from the discussions with

industry and Government personnel.

MILITARY AIRCRAFT

Many composite structural components have
been designed and produced during the past thirty
years for US and foreign military aircraft. Most of
these primary and secondary structures are listed
by aircraft and component in Tables A-1 (a) and A-
1(b). They include both development and produc-
tion components. Tertiary structural components,
such as landing gear doors, access doors, panels,
and fairings are not included.

Boron filaments and carbon (or graphite)
fibers first became available about 1965. Their

high compression strength and stiffness, in combi-
nation with low density, enabled boron fiber
reinforced plastics (BFRP) and carbon fiber
reinforced plastics (CFRP) to be used instead of

aluminum for high performance airplane struc-
tures. At about the same time, duPont introduced

Kevlar®, a low density aramid fiber. Aramid fiber
reinforced plastics (AFRP), which have high
tension strength but very low compression
strength, have been used for some lightly loaded
fairings and helicopter components and as hybrid
composites composed of two or more different

U.S. Military Aircraft. - Much of advanced
composite structures research and development in
the U.S. during the past 25 years has been associ-
ated with military aircraft applications. These
R&D programs provided much of the technology
base for production of-composite aircraft struc-
tures. During the 1965 to 1973 time period, boron
filaments were available at lower prices than
carbon (or graphite) fibers. Boron/epoxy also had
higher specific strength and stiffness than the then-
available carbon/epoxy materials. For these rea-
sons, boron/epoxy (BFRP) was the advanced
composite of choice in the late 1960s.

"This Appendix was prepared by Richard N. Hadcock, RNH Associates, from material that he had collected outside of
the present contract effort. The material collected by Mr. Hadcock provides an excellent background for the current study and
shows the growth of composites use on aircraft worldwide. The information is included here with Mr. Hadcock's permission.
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Thefirst aircraft to fly with advancedcom-
positecontrol servicesweresome50USAF
McDonnellF-4 aircraft that werefitted with
boron/epoxyruddersin the late 1960s.About the
sametime,a USNDouglasA-4 wasflown with a
boron/epoxyflap.

Boron/epoxywasalsoselectedby General
Dynamicsfor theF-111compositehorizontal
stabilizerUSAF developmentprogram.The
compositestabilizerwasflown in 1971.Boron/
epoxyreinforcementwasalsobondedto theF-111
D6-acsteelwing pivot fitting to reducestressand
increasefatiguelife of productionF-11ls. This
modificationincorporatedaremovableCFRP
fairing for inspectionof thepivot fitting.

In 1967,Grummanselectedboron/epoxyfor
anIRAD programto designandbuild awing box
extensionfor theFB-111.Thetechnologyand
experiencegainedon this andthe 1968USAF
AdvancedCompositesWing Structure(ACWS)
program,led to theGrummanF-14A boron/epoxy
horizontalstabilizer.Thestabilizerwasfully
qualifiedfor productionin 1969andflew for the
first time in December1970.TheF-14horizontal
stab!_izerwasthefirst advancedcompositesafety-
of-flight componentto fly andgo intoproduction.
(Lubin, 1971)

theMcDonnellF-15Ahorizontalandvertical
stabilizersandrudders.TheF-15Aspeedbrake
becamethefirst carbon/epoxyproductionsafety-
of-flight component.Thefirst F-15flew in 1972.
Approximately1.2%of theF-15airframeis
composite.McDonnell laterdesignedandbuilt a
BFRPF-15wing underanAir Forcedevelopment
program,but it wasneverflown.

Both theGeneralDynamicsYF-16A proto-
type,which flew in 1974,andit's competitorfor
theUSAF Light WeightFighterprogram,the
NorthropYF-17,hadCFRPstabilizers.General
Dynamics,which hadcompletedaUSAF CFRP
fuselagedevelopmentprogrambasedonthe
NorthropF-5A centerfuselage,wentonto design
andbuild a CFRPYF-16A forward fuselagein
1975.Thesecomponentswerestructurallytested
but did not fly or go intoproduction.

TheF-16Awon theLight WeightFighter
competition.TheYF-16AandearlyF-16Apro-
ductionhorizontalstabilizerswerehoneycomb
sandwichbonded/bolteddesign,whichhadto be
proof testedto satisfytheUSAF MIL-STD- t530
certificationrequirements.The reviseddesign,
whichhadCFRPcoversmechanicallyattachedto
aluminumsubstructureeliminatedtheneedfor
proof testing.

RockwellInternationalalsoselectedBFRP
for theF-100compositewing developmentpro-
gramfor theAir Force.A wingdemonstration
componentwastested,but thewing wasnever
flown.

A largeCFRP/GFRPoverwingfairingwas
introducedintoproductionfor theGrummanF-
14Din 1990.Five shipsetsof compositeoverwing
fairingshadpreviouslybeenproducedfor theF-
14Afor theNavy in-serviceevaluationprogram
(Manno,1977).

Thefirst significantCFRPcomponentto fly,
theDouglasA-4 flap, wasflight testedin 1970.
DouglasAircraft continuedwith thedevelopment
of aCFRPhorizontalstabilizerfor theA-4 undera
USNcontract.Thestabilizerfailedprematurely
understatictestdueto stressconcentrationsatan
attachment.Thoughneverflown, theprogram
providedDouglasandtheNavywith usefulinfor-
mationfor laterprograms.

Experiencefrom theF-4BFRP ruddersand
anIRAD horizontalstabilizerprogramresultedin

Lockheeddesignedandbuilt two boron/
epoxyreinforcedcenter-wingboxesfor theC-130.
Thesehavebeenin servicesince1974.

Grummandesignedandbuilt very large
compositehorizontalstabilizersfor theB-1A
bomber,which werestructurallytestedin 1976.
These,andtheRockwell-designedverticalstabi-
lizer,wereboth fully qualifiedfor theB-1A
bomberprior to cancellationof theprogramin
1977.WhentheB-1Bprogramwasrevivedin
1981,Rockwell decidedto revertto theoriginal
metalstabilizers.

Elevenleft-handouterwingsof theVought
A-7D weredesignedandbuilt underaUSAF
programin 1973-76.Threewingswereusedfor
flight andgroundtests;theremainingeightwere
put intoservicefor five yearsonAir National
Guardairplanes.Thesewerethefirst composite
wing componentsto entermilitary service.About
the same time, Vought designed and made 28
CFRP spoilers that were installed on Lockheed S-3
aircraft for Navy in-service evaluation. (Manno,
1977)
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Dassault Mirage III 1975
Dassault Mirage FI 1976 D
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2 1975 L = Limited Production

3 Ferry wing tip D = Development

Table A-1. Composite components on military aircraft.

(a) 1960-1979

In 1978, the McDonnell Douglas F/A- 18A
was the first military aircraft to designed with an

advanced composite wing. The F/A-18 was a
derivative of the Northrop YF- 17 with modifica-
tions to meet Navy requirements. The weight
increases due to a new landing gear, arrester hook,

wing folding, etc., required a larger wing and

increased fuel capacity.

A composite wing was selected for the F/A-
18 to save weight. The wing covers are CFRP
mechanically attached to aluminum substructure.
In addition to the wings, CFRP covers are used for
the horizontal and vertical stabilizers (produced by
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Northrop), the center fuselage upper skin panels,

the speed brake, flaps, and various fuselage access

doors and panels. CFRP accounts for 9.5% of the

structure weight (Weinberger, 1977; Kandebo,
1993a). The heavier McDonnell Douglas F/A-18E/

F, scheduled to fly in December 1995, has CFRP

wings that are 25% larger and stabilizers that are

36% larger than the F/A- 18A. Much of the center

AIRCRAFT YEAR'[

Alphajet 1980

Vought VSTOL A 1980
Fuji MT-X 1981
Grumman VSTOL A 1981
MD AV-8B 1981
Lockheed C- 141 1981

GD F- 16XL 1982
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Grumman X-29 1984
Dassault Rafale A 1986
BAe EAP 1986
IAI Lavi 1987

Grumman A6-E 1988

SAAB Gripen 1988
Bell/Boeing V-22 1989
N.orthrop B-2A 19.89 .,,
Lockheed F- 117 1990

Northrop YF-23 1990
Lockheed YF-22 1990

MD C-17A 1991
Rockwell/MBB X-31 1991
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1978. The modifications including replacing the
aluminum wing with a CFRP supercritical wing
that had 14% more wing area and 50% more
internal fuel volume. The production AV-8Bs,
which first flew in 1981, have a CFRP wing

(including substructure), horizontal stabilizer,
forward fuselage, rudder, wing flaps, fuselage
fairings, and strakes (Weinberger, 1977, Watson,
1982).

The AV-8B inboard flaps, inboard fairings,
and the strakes are high temperature carbon/
bismaleimide. All the other composite components
are carbon/epoxy. With the larger wing, the range-
payload capability of the AV-8B is approximately
twice that of the AV-8A. Advanced composites
account for 26.3% of the structure weight of the
AV-8B.

About the same time, the US Navy became

interested in a multipurpose V/STOL aircraft to
replace the Grumman E-2 and the Lockheed S-3.
Composite fuselage development contracts were
awarded to Vought (LTV) for development of rear
fuselage structure and to Grumman for develop-
ment of the center fuselage. Both these designs
were capable of significant elastic post-buckling

capability and were also designed to be exception-
ally damage tolerant.

Vought built a 6 ft full-scale section of the
rear fuselage using CFRP stiffeners, longerons,
and bulkhead webs with AFRP skins. Grumman

built a 25 ft long, 10 ft deep, and 7 ft wide section
of the center fuselage using CFRP skins that
incorporated GFRP crack-arrestment strips, rein-
forced by integrally molded CFRP hat-section
stiffeners and "J"-section frames. Tests at Naval

Air Development Center (NADC), Warminster,
demonstrated both post-buckling capability and
capability to hold limit load with significant low
energy impact damage as well as ballistic damage.

The first wing made from high temperature
carbon/polyimide, the General Dynamics F-16XL,
flew in 1982. The F-16XL has a gross weight of
48,000 lb compared with the F-16C gross weight
of 37,500 lb. The carbon/polyimide wing covers,

made using inner mold line (IML) moldforms, are
bolted to aluminum substructure. The F-16XL

wing is twice the area of the standard F- 16 wing
and carries 80% more internal fuel. The F-16XL

did not go into production; the two prototype
airplanes were acquired by NASA in 1989 and are

currently being used for flight test programs. The
Japanese FS-X, which is under development, is a
derivative of the F-16 and will have a Mitsubishi-

designed composite wing.

The Grumman X-29A forward-swept-wing
technology demonstrator aircraft first flew in
1984. The X-29A wing had CFRP covers me-

chanically attached to a substructure composed of
titanium and aluminum. The X-29A wing is

divergence critical so the wing covers were de-
signed using aeroelastic tailoring to preclude
divergence by coupling wing bending and twist.
This coupling was accomplished by orienting the
outer wing cover laminate axis at a different angle
than the wing geometric axis. Two X-29A aircraft
were built and are now in storage at NASA

Dryden Flight Center after completing about eight
years of flight testing. (Hadcock, 1985)

The CFRP wing of the Navy Grumman A-6E
was designed and built by Boeing to replace the
aluminum wing, which had a relatively short
fatigue life. The A-6E wing is much more com-
plex, larger, and more highly loaded than the wing
of the AV-8B. Its geometry is identical to the
metal A-6E wing, with the same wing-to fuselage
attachments, fold joints, store stations, and control
surfaces.

Design studies of the USAF Advanced
Technology Bomber (ATB) were initiated in 1979.
The ATB became the B-2A when the Northrop/

Boeing/Vought team won the development con-
tract in 1981, and the first flight took place from
Palmdale, California, to Edwards AFB on July 17,
1989. Almost all the skin and much of the sub-

structure are CFRP and other composite materials.
The B-2A wing has a span of 172 feet and a wing

area of 5,140 square feet. The span and wing area
are only slightly less than the wing of a Boeing
747 (Jane's All the World's Aircraft, 1993-94 and

prior ed.).

Northrop, the B-2A prime contractor, was
responsible for overall design, and designed and
made the leading edges, the crew station assembly,
wing tips, elevons, and fixed trailing edge assem-
blies. Boeing designed and manufactured the outer
wings and the wing-fuselage center section.
Vought designed and manufactured the intermedi-
ate wing section that included the engine bays,
inlets, and the main landing gear bays and doors.
Final assembly was performed at the Air Force
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plantin Palmdale,CA. At thestartof theprogram,
Northropsetup anadvancedCAD/CAM system
thatwassharedby BoeingandVought.

Followingthesuccessof theBell XV-15 tilt
rotor researchprogram,which wassponsored
jointly by NASA andtheUS Army, theDoD
outlineda requirementfor aJointServicesVertical
Lift aircraft,whichbecametheJVX program.In
1982,theBell/Boeingteamproposedatilt rotor
configurationin responseto theJVX program
solicitationandwasawardeda $200-million
contractfor preliminarydesign(Jane's;Air
International,May 1989).

The$1.8-billion full-scaledevelopment
(FSD)contractwasawardedto theBell/Boeing
teamfor theaircraft in June1985.Allison won the
enginecompetitionwith a derivativeof theT-56
turbopropin December1985.Thedevelopment
programconsistedof six flight testprototypesplus
astaticandafatiguetestprototypeaircraft.The
first prototypeV-22A flew onMarch9, 1989.The
fifth prototypewaslostonJune1, 1991.Boeing
Helicoptersdesignedandbuilt theprototype
fuselages.BoeingDefenseandSpacedesignedand
built theprototypewingsundera subcontractfrom
Bell. Grummandesignedandbuilt theempennage
underasubcontractto BoeingHelicopters.

Theairframeof theBell/BoeingV-22A
Ospreymulti-missiontilt-rotor aircraft is almost
entirelyintegrallystiffenedCFRP,whichaccounts
for approximately70% of theairframcweight.The
rotorbladeshavehollow GFRP/CFRPsparswith
honeycombsandwichtrailing edges.Theoriginal
V-22programschedulecalledfor limited produc-
tion of 12aircraftto startin 1990andreachinga
peakof 132aircraftby 1996.A majorredesign
wasstill beingfundedin FY 1993.A critical
designreviewto freezethedesignof
preproductionaircraftwasscheduledfor late1994.
Fourengineeringandmanufacturingdevelopment
(EMD) aircraftarescheduledto bedelivered
beginningin 1996.Thedesignof thesubsequent
low-rateproductionaircraftwill be fixed in 1997
(Kandebo,1993c).

Thestabilizersof theLockheedF-117A,
whichprovideyawcontrol,wereoriginally made
from aluminum(theprototypeairplaneflew in
1981).Thesehavebeenmadefrom carbon/ther-
moplasticsince1990and,exceptfor somesmall
componentson theF-22A,appearto betheonly

productionapplicationof carbon/thermoplastic
structures.

In 1986,theLockheedYF-22A andthe
NorthropYF-23A wereselectedastheUSAF
AdvancedTacticalFighterDemonstration/Valida-
tion (Dem/Val)programwinners.Both aircrafthad
madeextensiveuseof CFRPcomposites.TheYF-
22A wasdesignedandbuilt by aconsortium
composedof Lockheed,Boeing,andGeneral
Dynamics.Northropteamedwith McDonnell for
theYF-23A.

TheNorthropYF-23A first flew in June
1990followedtwo monthslaterby theLockheed
F-22A.Lockheedwasselectedto proceedwith the
F-22AEMD programin April 1991.Lockheedhas
overallprogramresponsibilityaswell asdesign
andfabricationof theforward fuselage,inlets,
wing leadingedgeflaps,trailing edgeaileronsand
flaperons,andtheverticalandhorizontalstabiliz-
ers.GeneralDynamics(now partof Lockheed)is
responsiblefor thefuselagecentersectionand
Boeingisresponsiblefor thewing (Jane's).

BoththeYF-22A andtheF-22A haveCFRP
wing, fuselage,andempennagesurfaces.Ad-
vancedcomposites,titanium,andaluminum
accountedfor 23%,23%and35%, respectively,of
thestructureweightof theYF-22A. Thecompos-
itesportionwas13%thermoplastic(TP) matrix
and10%thermoset(TS) materials.Following live
fire testsandareevaluationof theTPmaterials,
thedistributionon theF-22A will be26%compos-
ites(22%TS,4%TP),30%titanium,and 14%
aluminum.TheF-22Ais scheduledto makeits
first flight in 1995with full productionstartingin
1998(Morrocco,1993a,1993b).

Muchof theairframeof theGeneralDynam-
ics/McDonnellDouglasA- 12Navy attackbomber
wasgoingto bemadefrom carbon/bismaleimide
composites.This programwasterminatedby the
Navy in 1991becauseof scheduledelays,cost
overruns,andNavyconcernsaboutcorrosionof
theBMI matrix in ajet fuel/seawaterenviron-
ment.

TheUSAF C-X programfor a heavylift
military transportwaswon by McDonnellDouglas
in July 1982andbecametheC-17A.Full scale
developmentwasapprovedin February1985and
thefirst developmentaircraft first flew in Septem-
ber 1991.Four airplaneswereonorderin FY 1992
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andeightin FY 1993.Compositecomponents
consistof controlsurfaces,fairings,andengine
nacelles,whicharesimilar to thecomponents
currentlyin serviceoncommercialairliners.About
15,000Ib of compositematerialsareusedin theC-
17A,accountingfor some8%of theairframe
weight.Most of thecompositecomponentsare
suppliedby subcontractors.Thecomponentsand
manufacturersinclude(Jane's;Parker,1989a):

AFRPwing trailingedgepanels
andflaphingefairings: AerostructuresHamble

CFRPwingletsandmainandnose
landinggeardoors: Beech

CFRPailerons,elevators,andrudders: Grumman

CFRP/AFRPwing-fuselagefillets: HeathTechna

CFRPtail cone: Martin Marietta

CFRP/AFRPmainlanding
gearpods: NorthwestComposites

CFRPspoilers: Textron

CFRPenginenacellesandAFRP
stabilizerleadingedges: Vought

Foreign. Military. Aircraft. - Some of the
major European aircraft companies initiated
advanced composite structures development

programs in the early 1970s. Foreign military
aircraft and their associated composite components
are included in Tables A-1 (a) and A-l(b).

The British government and aircraft industry
have been involved in development of polyacry-
lonitrile (PAN) precursor CFRP structures since
1964, when the Royal Aircraft Establishment filed
the patent for high-strength, high-modulus PAN-
based carbon fibers. British Aircraft Company

(BAC) and Hawker Siddeley Aviation (both are
now part of British Aerospace PLC) were involved
in structural development of CFRP components. In
1968, Hawker Siddeley began a CFRP structures

development program that resulted in design,
fabrication, and flight test of a Harrier ferry wing

tip (which incorporated an additional fuel tank), an
airbrake flap for the Vulcan bomber, and six CFRP
rudder trim tabs that were installed on BAC Jet

Provost trainers to obtain service experience

(Sanders, 1971; Fray, 1991; Molyneaux, 1978).

About 1974, BAC initiated a cooperative

program with Grumman to develop CFRP engine
bay doors for the Jaguar ground attack aircraft.
This was followed by the BAC-MBB Tornado
CFRP Taileron development program and the
BAC CFRP wing development program, which
used the Jaguar wing as the baseline.

Around the same time, Hawker Siddeley was
working with McDonnell Aircraft in the develop-
ment of the AV-8B Harrier. Hawker Siddeley
(now BAe) manufactures all the CFRP horizontal
stabilizers for the U.S. AV-SB as well as the
British Harrier GR Mk 5 and Mk 7 V/STOL close

support aircraft.

The BAe Experimental Aircraft Programme

(EAP) technology demonstrator program was
initiated in 1982 as a result of joint British-Ger-
man-Italian European Combat Aircraft studies.
The German team members, MBB and Dornier,

dropped out of the program in 1983, but BAe and
Aeritalia went ahead with the program. Flight

testing began in 1986. The wing covers and sub-
structure were all CFRP and were made using the
BAe co-bonding process. One wing was built by

BAe in England, the other by Aeritalia in Italy.
The canards had CFRP covers bonded to honey-
comb/metal substructure. The remainder of the
airframe and control surfaces were metal

(Braybrook, 1986).

In 1985, SAAB contracted BAe to design
and manufacture the first 3 ship-sets of CFRP

wings for the JAS 39 Gripen multi-role light
fighter. SAAB is manufacturing the production
aircraft wings and designed and built the remain-
der of the structure, which includes a GFRP
vertical stabilizer, canards, control surfaces, and

landing gear doors. CFRP materials account for
30% of the structural weight of the Gripen
(Braybrook, 1986). The first SAAB Gripen flew in
December 1988 but crashed in February 1989 just
before landing due to loss of control. The test pilot
survived the crash with very little injury, possibly
because the composite wings broke off cleanly as
the aircraft hit the runway (Jane's).

SAAB started an advanced composite devel-

opment program with a British company in the
1970s to design and build a CFRP elevator for the
canard of the Viggen. The elevator development
was followed by a cooperative program with
Grumman to develop a CFRP vertical stabilizer for
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theSAAB JA 37Viggen.Grummanmadethe
prototypestabilizers,which incorporatedparts
designedandfabricatedby SAAB. Thesewere
flight andgroundtestedby SAAB who then
producedsome50stabilizersfor theSwedishAir
Forceto obtainCFRPstructuresin-serviceexperi-
ence.

Avion MarcelDassault-Br6guetAviation
(Dassault),with financialassistancefrom the
Frenchgovernment,starteddevelopmentof CFRP
structuresfor theirmilitary aircraft in theearly
1970s.Their first designwasthe rudder of the
Dassault Mirage III fighter. One flight test and one
ground test article were built and tested in 1975.
This was followed by the Mirage F1 CFRP hori-
zontal stabilizer program in 1976. Four prototype
stabilizers were built and flight and ground tested.
Dassault then decided to design CFRP ailerons for

the F1. The prototypes were flight and ground
tested in 1977. These were 26% lighter than the
aluminum ailerons, so they were put into produc-
tion at a rate of 7 ship sets per month. More than
730 Mirage F1 had been produced by the begin-
ning of 1990 (Chaumette, 1982).

:::-:_Dassault introduced the Mirage 2000 multi-
role fighter in 1978 and the Super Mirage 4000 in
1979. Both aircraft had CFRP vertical stabilizers

and rudders (the Mirage 4000 stabilizer was also a
fuel tank), inner and outer elevons, and landing
gear doors. The Mirage 2000 avionics access door
and the Mirage 4000 canards were also CFRP.
Only prototypes of the Mirage 4000 were built, but

approximately 500 Mirage 2000 fighters have been
produced since 1984 (Chaumette, 1982).

Dassault followed with a program to develop
a CFRP horizontal for the Br6guet-Dornier Alpha
Jet. The stabilizer utilized CFRP covers bonded to

full-depth honeycomb core outboard, transitioning
to a bolted multi-spar substructure inboard (similar
to the SAAB Viggen Vertical Stabilizer design).
The stabilizer was designed using an automated
optimization computer program and was projected
to be lighter and less expensive than the metal
baseline (Chaumette, 1982).

About 1980, Dassault and Aerospatiale were

sponsored by the French government to design,
build, test, certify and fly a composite wing for the
Dassault Falcon 10. The development was jointly
funded by Dassault and Aerospatiale. The wing
was fully certified and was flown in the mid-
1980s. The Falcon 10 wing program provided

Aerospatiale with the know-how and confidence
needed for the ATR 72 CFRP wing, described

later in this section. It also gave Dassault the
know-how and confidence needed to baseline a

CFRP wing for the design of the Rafale
(Chaumette, 1982).

The Dassault Rafale 'A' prototype first flew
in July 1986, and the first production Rafale 'C'
flew in April 1991. The Rafale is a land-based or

carrier-based multi-role fighter and is about the
same size and weight as the F/A-18. CFRP compo-
nents account for about 35% of structural weight
and include the wing, canards, vertical stabilizer,
control surfaces, landing gear doors, and some
fuselage panels. Significant use is also made of
aluminum-lithium alloys and superplastic-formed
diffusion-bonded (SPF/DB) titanium parts for the
leading edge flaps and hot fuselage structure
(Interavia, 1985).

Dornier used the Alpha Jet wing as the
baseline for their CFRP wing development pro-
gram during the mid 1980s. The Alpha Jet ground
support/trainer aircraft was used by both Dornier
and Br6guet as a test bed for CFRP structures,

shown shaded in Figure 6-lB. The Alpha Jet wing
had CFRP spars and integrally stiffened covers
and with aluminum ribs and fuselage attachment
plates (Rose, 1986).

The latest Western European fighter to
utilize significant quantities of CFRP structure is
the British-German-Italian-Spanish Eurofighter
EFA (European Fighter Aircraft), which first flew
in 1992. CFRP structures include the wings,
forward fuselage, vertical stabilizer, and control
surfaces. The canards are metal (Jane' s).

The Israeli Aircraft Industries (IAI) Lavi
fighter full scale development program was started
in October 1982. Grumman was contracted to

design and build the GFRP wings and vertical
stabilizer and IAI designed and built the CFRP
canards. The first prototype aircraft flew on De-
cember 31, 1986.

Following the Lavi flight tests, the wing
geometry was changed and the areas of the control
surfaces were increased. This required a major
wing redesign. The original wing had CFRP skins
bolted to CFRP substructure. The redesigned wing
retained CFRP for the covers, but the substructure

was changed to aluminum. There was a significant
cost saving and only a small weight penalty chang-
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ing to aluminumsubstructure.SincetheLavi
productionprogramwascanceled,IAI hasused
theaircraftfor technicaldevelopmentandflight
testing(Jane's).

Advancedcompositestructuredevelopment
by theSoviet(now RussianandUkrainian)aircraft
companiesappearsto havelaggedbehindthatof
therestof Europe.Fighteraircraftapplications
includetheCFRPverticalstabilizers,therear
portionof thehorizontalstabilizers,rudders,
ailerons,andflapsof theMikoyan MiG-29, which
first flew in 1977andenteredoperationalservice
in 1983(Fricker,1988).

Ukrainianmilitary transportapplications
includesome12,000poundsof CFRP,AFRP,and
GFRPin theairframeof the largeAntonovAn-124
Ruslan(Condor),whichfirst flew in 1982.The
evenlargerAn-225Mriya (Cossack),whichflew
in 1988,wasreportedto utilize compositesfor 25-
30%of thestructureweight (Jane's,DeMeis,
1988).

In Japan,Fuji designedandbuilt someCFRP
rudders that were flown on the Mitsubishi T-2

supersonic trainer in 1979. Fuji went on to design,
build and test a vertical stabilizer for their MT-X

advanced trainer contender in 1981. Fuji lost the

prime trainer contract to Kawasaki. The elevators
and rudder of the Kawasaki T-4 are made from

CFRP. (Private communication, Fuji Industries,
Utsonomiya, Japan, 1981)

Mitsubishi proceeded with CFRP primary
structures development and is currently designing
and building an all CFRP wing for the FS-X.
Mitsubishi was appointed prime contractor of the
FS-X program, which is a modified General
Dynamics F-16C. The first of four prototypes is
due to fly in 1996. General Dynamics, Kawasaki,
and Fuji are the major subcontractors.

COMMERCIAL TRANSPORT AIRCRAFT

Most of the composite structural components
designed during the past twenty-three years for US
and European commercial transports and business

and private aircraft are listed by component type in
Table A-2. These include both development and

production primary and secondary structures.
Tertiary structural components, such as wing and
stabilizer fixed leading edges and trailing edge

panels, landing gear doors, access doors, fairings,

cabin floors, arid engine nacelles and inlets are not
included in the table.

U.S. Turbojet Transports. - Most of the US
airliner components, designed and built during the
1972-1986 time period, were developed under the
NASA Langley Research Center Aircraft Energy
Efficiency (ACEE) program and a predecessor
flight service evaluation program to establish a
long-term durability data base for composite
materials and structures. The NASA programs
included limited production and airline service
evaluation of various components. It also included
a program to determine the long-term effects of
exposure to moisture, ultraviolet radiation, fuels,
and hydraulic fluids on the mechanical properties
(NASA CP-2321, 1984).

The first airliner advanced composite compo-
nent to fly was a Boeing 707 boron/epoxy fore-
flap, which was flown in 1970.

Under the NASA flight service evaluation
program, Boeing designed and built 108 carbon/
epoxy spoilers that entered service on Boeing 737
aircraft with six different airlines in 1973. Some

spoilers were later made from different carbon/
thermoplastic materials, but had to be taken out of
service because the matrix was degraded by
hydraulic fluid (NASA CP-2321, 1984).

Under the NASA ACEE program, Boeing
continued with ten CFRP elevators that entered

service in I980. These were followed by four
Boeing 737 CFRP horizontal stabilizers that were
installed on two aircraft in March 1984. These
horizontal stabilizers were the first commercial

transport CFRP primary structures certified for
airline service. (NASA CP-2321, 1984)

Douglas Aircraft designed and built thirteen
CFRP upper rudders and three boron/aluminum aft
pylon skins for the DC-10 under a NASA pro-
gram. Additional rudders were built under the
ACEE program. The rudders first entered service
in 1975. Some of the upper rudders, which are a
multi-rib post-buckled design, are still in service.
This design approach was later used for the CFRP
MD-l 1 ailerons. The aft pylon skins were the first
metal matrix composite components to enter
airline service (NASA CP-2321, 1984).

Douglas followed by designing and building

a multi-spar vertical stabilizer for the McDonnell
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AIRLINERS

Boeing 707
Boeing 737-200
MD DC-10

Boeing 727
Boeing 767
Lockheed L-1011

Boeing 757
Airbus A300-600

Boeing 737-300
Airbus A310
Airbus A320/A321

llyushin II-96
Tupolev Tu-204
MD MD- 1 I

Airbus A330/A340

Boeing 777

1970
1973/84

1975-78

1980
1981
1982

1882
1983
1984
1985
1987
1988
1989

P
L
P

P
P

P
P

P P

314

L 1

L L

L
P P

D
P P

P P
P P P
P P P

P P
P P

P P P
P P P

[ 6 I101 10

D

P P
P

P
P P P

P

L 2

P P

1990 P P P
1993/91 P P P

1995 P P P

TOTALS [ IololololoI 171711011

REGIONAL TRANSPORTS

Embraer Brasilia

SAAB 340
ATR 42
Fokker 100

ATR 72

1983 p3

1984
1986

1988

P P P
P

P P P P P

Dornier 328 1991 P P P P P P P

TOTALS ] I [ 1 ] 0 [ 0 [ 2 ] 2 ] 1 [ 1 ] 3 I 3 ] 4

P
P

P
P
P

P

161 01

P

tYear of first flight or completion of R&D program.

1 1984 P = Production

2 1973 L = Limited Production

3 Tail cone D = Development

Table A-2.- Composite components on commercial transport aircraft.

Douglas DC-10 in 1977. The stabilizer was still in
service with Finair in June 1993.

Lockheed participated in the NASA flight
service program with eighteen AFRP fairing

panels for the L-1011. These panels entered airline

service in 1973. In the ACEE program, eight
CFRP ailerons were designed by Lockheed and
built by Avco and entered service in 1982 (NASA
CP-2321, 1984). Lockheed also designed and built
a CFRP L-1011 vertical stabilizer. The vertical

stabilizer failed during static test partly because of
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Boein_ 737 Boeinlz 757 Boeing 767 Boein_ 777Composite
Component
Ailerons
Elevators
Rudder

Spoilers
Inboard Flaps
Outboard Flaps
Floor Beams

Ldg Gear Doors:
Main
Nose

Fairings
Nacelles

Boeing
Boeing
Shorts (UK)

Various

Boeing
Boeing
Boeing
Grumman

Shorts (UK)

CASA (Spain)

Heath Techna
Various

Alenia (Italy)
Alenia (Italy)
Alenia (Italy)
Alenia (Italy)

Fuji (Japan)
Boeing

Fuji (Japan)
Various

CASA (Spain)
HDH (Australia)
ATA (Australia)
Grumman
Grumman

Alenia (Italy)
Rockwell

JADC (Japan)
Shorts (UK)

JADC (Japan)
Various

Table A-3. Boeing composite component suppliers.

the method of load introduction. Extensive long

term environmental and cyclic load tests were
performed on spar and skin panel components, but
no flight articles were built.

Boeing started design of both the model 757
and the 767 in the late 1970s. The 767 made its

first flight in 1981 followed by the 757 in 1982.
Boeing decided to baseline CFRP composites for
the elevators, rudders, spoilers, landing gear doors,
and engine cowlings for both these airplanes. The

flaps of the 757 are also CFRP. Composite compo-
nents account for about 3,400 lb of structure on
both the 757 and 767.

When Boeing introduced the 737-300 in
1985, CFRP composites were selected for aileronsl

elevators, the rudder, fairings, and engine cowl
doors. Composites account for 1,500 lb of the
structure.

The Boeing 777, scheduled to fly in 1994,
utilizes about 18,000 lb of composites, some 9000
lb of which are CFRP. CFRP components include
the entire tail, control surfaces, floor beams, main

landing gear doors, and engine nacelles. Other
composite components include wing-fuselage
fairings, and wing fixed trailing edge panels. The
CFRP horizontal and vertical stabilizers are made

by Boeing. Many of the other composite compo-
nents are being supplied to Boeing by U.S. and
foreign subcontractors (Table A-3).

The structure of the McDonnell Douglas
MD-11, which first flew in January 1990, includes
almost 9,500 Ib of composites. Components
include CFRP elevators, winglets, ailerons, out-

board flaps, spoilers, wing fixed trailing edge
panels, tail cone, engine cowls, center engine inlet
duct, cabin floor beams, and AFRP/GFRP wing-
body and aft body fairings. Almost all these
composite components are produced by subcon-
tractors. Some of the suppliers include: Fuji
(Japan): outer ailerons; Embraer (Brazil): outboard
flap; Mitsubishi (Japan): tail cone; Westland (UK):
flap vanes; Heath Techna (US): center engine inlet
duct (Therson, 1989, Colucci, 1991).

Foreign Turbojet Transports. - The European
consortium, Airbus Industrie, uses about 4,000 lb

of composites on the A300, which first flew in
1972. A300-600 components include CFRP/GFRP
elevators and rudders, CFRP spoilers, nose landing
gear doors, and main landing gear leg fairings,
GFRP wing upper surface trailing edge panels, and
AFRP wing-body fairings and flap track fairings.

Use of composites was extended in 1985 by
changing the Airbus A310 vertical stabilizer
material from aluminum alloy to CFRP. The CFRP
vertical stabilizer, built by MBB (DA) in Ger-

many, also contain a balance fuel tank on the long-
range A310-600. About 7,400 lb of composite
structures are used on the A310.

Composites use was further extended in 1987
on the Airbus A320. Both the horizontal and
vertical stabilizers are CFRP as well as the eleva-

tors, rudder, ailerons, spoilers, flaps, wing leading
and trailing edge access and fixed panels, landing
gear doors, and engine cowls and doors. Fairings
are GFRP and AFRP. Composites account for
about 9,000 lb or 15 % of the structure of the

A320. The larger Airbus A330/A340 uses compos-
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Airbus A300-600 Airbus A310-300 Airbus Airbus 330/340
320/319/321

Composite
Component
Horiz Stabilizer

Vert Stabilizer

Ailerons
Elevators
Rudder

Inboard Spoilers
Outboard Spoilers
Inboard Flaps
Outboard Flaps
Wing LE Panels
Wing TE Panels

Ldg Gear Doors:
Main
Nose

Fairings:
FWD Wing-Fuse

Rear Wing-Fuse
Nacelles

CASA
DA*

Aerospatiale
DA

BAe**
BAe

Fokker
CASA

Aerospatiale

Rohr (US)

DA

CASA
DA
DA
DA

BAe
BAe

CASA
CASA

Aerospatiale
Belairbus

Rohr (US)

BAe
CASA

CASA
DA

Aerospatiale
CASA

DA
BAe
BAe
DA
DA
BAe
BAe

CASA

Aerospatiale

Aerospatiale
Aerospatiale
Rohr (US)

DA
BAe
BAe
DA

Textron (US)
BAe
BAe

ATA (Australia)
Fokker

Aerospatiale
Aerospatiale
Rohr/Grumman (US)

*Deutsche Airbus **British Aerospace ***Construcciones Aeromiuticas, S.A.

Table A-4.- Airbus composite component suppliers.

ites for similar components, but, although the total
weight of composite structure is much higher, the
percentage weight dropped to 12% (Parker,
1989b).

The Airbus A320 and A330/340 CFRP

horizontal stabilizers are designed and are built in
Madrid by CASA, Airbus Industrie's Spanish
partner (Barrio Cardaba, 1990, Marsh, 1991). The
A310, A320, and A330/340 CFRP vertical stabi-

lizers are designed and built by the Deutsche
Airbus division of MBB (DA) at Stade in Ger-

many. Suppliers of composite components to
Airbus are listed in Table A-4 (Jane's).

The Soviet nushin 11-86 wide-body airliner,
which entered limited service with Aeroflot in

1980, had CFRP cabin floors. The derivative 11-96,

which first flew in 1988, has CFRP flaps and cabin
floors. The horizontal and vertical stabilizer

leading edges are also composite but are probably
GFRP or a CFRP/GFRP mix (Jane's).

The Tupolev Tu-204 medium-range airliner

structure is about 18% by weight composites
(approximately 20,000 pounds). The Tu-204,
which -first flew in 1989, is the Russian counterpart

of the Boeing 757. CFRP components include
spoilers, airbrakes, flaps, elevators, and the rudder.
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Other composite components include part of the

wing skins, stabilizer leading edges, and wing-
fuselage fairings (Jane's).

Turboprop Transports. - Advanced compos-
ites are used extensively for control surfaces
(ailerons, elevators, rudders, and flaps) of turbo-

prop regional transport aircraft. Many of these are
made from AFRP or a mix of AFRP with local

CFRP reinforcing.

The de Havilland Canada Dash 8, which has
been in airline service worldwide since 1984, uses

AFRP for the wing and stabilizer and flap leading
edges, wing tips, flap trailing edges and shrouds,
wing-to-fuselage fairings, and engine nacelles.
AFRP components account for about 2,000 lb, or
10% of the structure weight. Approximately 350
Dash 8s are currently in service.

The first commercial transport airplane with
a CFRP wing to enter airline service (in 1989) was
the Avions de Transport R6gionale ATR 72.

Avions de Transport R6gionale is a French/Italian
consortium composed of A6rospatiale and Alenia.
The ATR 72 is a derivative of the 42-passenger
ATR 42, which was certified and entered airline

service in 1985 (Pilling, 1988).



The complete outer wing of the ATR 72 is
made from CFRP instead of aluminum because the

wing weight was critical to operating performance
and costs. The wing, designed and manufactured

by A6rospatiale, incorporates fuel tanks and the

design is based on much of the experience which

A6rospatiale gained from their joint program with
Dassault from the Falcon 10 CFRP wing program.

A6rospatiale manufactures the wing compo-
nents that are assembled at Toulouse, France.

Other ATR 42 and ATR 72 composite components

produced by A6rospatiale include the wing fixed

leading edge and trailing edge panels, ailerons,

wing-to-fuselage fairings, and engine nacelles. *

Alenia manufactures the fuselage and tail of

both the ATR 42 and ATR 72 in Italy. Composite

components include the elevators, rudder, landing

* Private communication on composites use on the ATR 72

supplied to R. Hadcock by Avions de Transport REgional,

Blagnac Cedex, France, November 1993.

gear doors and fairings, and tailcone. Final assem-

bly of the ATR 42 and ATR 72 takes place at

Toulouse (Pilling, 1988).

The first commercial transport to enter

airline service that has significant portions of the

fuselage made from CFRP was the German DA

Dornier 328. The rear fuselage, pressure bulkhead,

and nose cone are made from CFRP. The wing-

fuselage and the main landing gear fairings and
doors are made from mixed CFRP/AFRP. The

wing flaps, ailerons, and wing tips, as well as the

complete tail of the Dornier 328, are all CFRP.

CFRP/AFRP mixed composites are used for the

wing fixed trailing edges and the dorsal fin

(Jane's).

GENERAL AVIATION

Business Aircraft. - Business aircraft are

listed in Table A-5 together with their associated

composite structures components. The German
Claudius Dornier Seastar light amphibious flying
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LearFan 2100 1981 L L L L

Dassault Falcon I0 1983 D D

Dornier Seastar VT01 1984 D D

Dassault Falcon 50 1984

Avtek 400 1984 D D D D

Gulfstream IV 1985 P

Beech Starship 2000 1986 P P P P

Piaggio Avanti 1986

Cessna Citation 1987

Dornier Seastar CD2 1987 P P P P

P P P P

I 6 ] 6 I 6 I 7

Avtek 400A 1991

TOTALS

L L L L L L

D D D D

P

D D D D D D

P P P

P P P P P P

P P P P

P P P P

P P P P P P

P P P P P P

17 I 7191 9 I 81 6

* Including canards
t Year of first flight

P = Production
L = Limited Production

D = Development

Table A-5. Composite components on business aircraft.
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boat is included in the list.

The only three business aircraft that have
been almost entirely made of advanced composites
are all American-made. All three programs have
had major structural problems that caused weight
growth, extension of design and development
schedules, and cost increases.

The first of these composite aircraft was the
LearFan 2100, which was conceived by Bill Lear
shortly before his death in 1978. Almost the entire
airframe was made from CFRP and AFRP. All

primary structure was sheet-stiffened construction.

The prototype first flew in 1981. The air-
frame was modified following wing and fuselage
failures during structural test. The modified air-
frame did satisfy structural certification require-
ments and was certified by the FAA. The struc-
tural modifications required to meet certification in
combination with premature failure of the gearbox
delayed the program, increased development costs,
and caused most of the 200 orders to be with-

drawn. The first and only production aircraft
finally flew in t983. LearFan Corporation declared
bankruptcy in 1985 because of delays and difficul-
ties in FAA and British CAA certification and

other financial problems (Jane's; AWST, Jan 12,
1981; Whitaker, 1981 ; Wigotsky, 1983).

The second all-composite aircraft was the

Beech 2000 Starship. The Starship configuration
was originally conceived in 1982 by Burt Rutan
and went into production in 1988. The Starship has
an airframe made almost entirely from CFRP-
Nomex® honeycomb sandwich construction. An
85% scale proof-of-concept vehicle was flown in
1983. The first of three Starship prototypes flew in
February 1986. Major structural modifications had
to be made to the wing to satisfy FAA damage
tolerance requirements, and to the fuselage follow-
ing premature failure during structural test. The
first production Starship, which was flown in April
1989, had a take-off gross weight of 14,400 lb
compared with an original target weight of 12,500
lb. The weight increase in combination with
aerodynamic efficiency that was lower than ex-
pected based on the performance of the scale
vehicle, reduced range and performance. Because
of limited aircraft orders, Beech decided in 1993 to

terminate production at 50 aircraft (Jane's; Abbott,

1989; Aerosp Eng, Apr 1990).

The third composite airplane was the Avtek
400 light corporate transport.* Avtek Corporation
has produced one proof-of-concept Model 400 that
first flew in 1984. The airframe, designed by Dr.
Leo Windecker, is 72% Kevlar®/epoxy and 18%
carbon/epoxy by weight. Following flight and
wind tunnel tests, the aircraft was redesigned and
incorporated so many major changes that the
current Model 400A is essentially a new design.
CFRP is used for the wing spar caps and webs, and
the rudder. Two ground test aircraft are being built
for FAA certification tests to FAR Part 23 require-
ments. Current investors in Avtek include duPont,
the State of Alabama, the government of Malaysia

and various foreign companies. Avtek is currently
looking for about $70-million for the flight tests
and structural tests needed to complete the
FAR Part 23 certification program. They have
orders for 89 airplanes (about two years of produc-
tion) (Jane's).

Other US business aircraft CFRP applica-

tions include the Gulfstream IV engine support
structure and the pressure bulkhead as well as the

ailerons, rudder, and spoilers, which were de-
signed and are made by Lockheed. The elevators,
rudder, ailerons, and flaps of the Cessna Citation V
are also made from composites.

The Claudius Dornier Seastar was designed
in Germany by a team led by the late Dr. Claudius
Dornier (who had no connection with Dornier

GmbH). The Seastar is a light twelve-passenger
STOL amphibian, designed to operate from grass,
water, snow or ice. The airframe is made almost

entirely from GFRP with some CFRP reinforcing.
Design was started in January 1982 and the proto-
type Seastar was flown from July 1984 until it was
damaged landing on Lake Constance in July 1985
(Air Int, Oct 1988).

The damaged aircraft, which originally had
been flown with an aluminum wing from a Dornier
Do 28 and a composite fuselage, was repaired and
rebuilt with an all-composite wing. Designated
CD2, the rebuilt aircraft flew in April 1987. CD2
Seastar production started in October 1989 but the
company went into bankruptcy one month later.

*Private communication on composites use on the Avtek
Model 400A supplied to R. Hadcock by Robert Adikes,
Avtek Corp., September 1993.
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DomierCompositeAircraft, ownedby Conrado
Domier,purchasedthecompanyinFebruary1990.
TheCD2 wascertificatedby LBA in October1990
andmeetstheFAR Part23commuteraircraft
certificationrequirements.Thefirst production
Seastarwasdeliveredat theendof 1991(Jane's;
Air Int, Oct 1988).

DassaultandA6rospatialeweresponsoredby
theFrenchgovernmentin 1980to designandbuild
a CFRPwing for theDassaultFalcon10business
jet. Theintegrally stiffenedwing coversandmost
of thebeamsandribs in thesubstructurewere
CFRP.Themainlandinggearribs, innerrear
spars,andtherootwing-to-fuselagelapjoints were
aluminum.

TheFalcon I0 programincludedfabrication
andtestsof critical subcomponents.TheCFRP
wingwasflown onaFalcon10 in 1984and
providedA6rospatialeandDassaultwith the
technologyandexperiencetheyusedfor theATR
72andDassaultRafaleCFRPwing programs.
Boththetwin-engineFalcon50andthethree-
engineFalcon900haveCFRPailerons
(Chaumette,1982).*

TheItalian PiaggioP.180Avanti light
corporateturbopropwasproducedat arateof 24
airplanespermonthin 1991.Thecompleterear
fuselageandempennageassemblyof theAvanti is
CFRPandwasdesignedandisbeingproducedby
Sikorsky.PiaggiomakestheCFRPcanard.The
Avanti prototypefirst flew in September1986and
thefirst productionairplaneflew in January1990.
Full Italian certificationwasobtainedin October
1990.

Private, Trainer, and Competition Aircraft. -

A list of composite components on private, trainer,
and competion aircraft is given in Table A-6. The
Windecker AC-7, Eagle I, was the first all-com-

posite private aircraft to receive FAA certification.
The Eagle was designed by Leo Windecker who
used GFRP for the entire airframe. The Eagle flew
in 1967 and received FAA certification in 1969

(Rosato, 1969; Taylor, 1989). The Eagle was a
high-performance, single engine, four-seat mono-

plane but did not go into production. Leo
Windecker later assisted in the design and devel-

opment of the Avtek 400.

*Private communication, Avions de Transport R6gional,

Blagnac Cedex, France, November 1993.

The Bellanca Model 19-25 Skyrocket II, a

six-seat light monoplane, was also made almost
entirely from GFRP. The Skyrocket was designed
and built by Bellanca Engineering Inc., a company
formed by August Bellanca. Design and construc-

tion of the prototype started in 1971 and the
airplane first flew in March 1975. Powered by a
435 hp Continental engine, the Skyrocket II had a
cruise speed of 331 mph and a range of 1,465
miles and held five FAI speed records. Bellanca
was working on FAA certification in 1984, but the

program was never completed. The airplane was
used by NASA Langley for flight and wind tunnel
tests in 1982 (Jane's; Taylor, 1989).

For the past 25 years, Scaled Composites Inc.
led by Burt Rutan, has been involved in design and
fabrication of many all-composite proof-of-con-

cept and competition aircraft. These aircraft, which
are made from CFRP/foam sandwich construction

are not included in this report. They include the

Voyager, which was the first airplane to fly around
the World without refueling, the Pond Racer, the

NASA AD-1 oblique wing research aircraft, the
scale demonstration T-46, and the Starship.

The British Slingsby T67 Firefly aerobatic,
training and sporting aircraft is an all-composite
version of the French wooden Fomier RF6B.

Slingsby has made GFRP high performance
sailplanes for many years and used their sailplane
experience to design the Firefly. The T67B gained
CAA certification in September 1984 and about
200 had been sold to customers world wide by
1993.

The USAF ordered 113 Slingsby T67s,
designated the T-3A, to fulfill the Enhanced Flight
Screener (EFS) program. T-3As are being pro-
duced at a rate of 5 aircraft per month and are
assembled by Northrop. FAA certification is being
obtained to avoid the need for USA airworthiness

testing. The T-3A airframe is GFRP with local
reinforcement of CFRP. The structure has been

modified to satisfy the USAF +6/-3g limit require-
ments carrying two 260 Ib pilots (Jane's; Penney,
1993).

Sukhoi first flew the Su-26M single-seat

aerobatic competition aircraft in June 1984 and

gained both the men's and women's team prizes in
the 1986 World Aerobatic Championships. The

wing and empennage have CFRP and CFRP/AFRP
skins. Composite materials comprise more than to
50% of the structure weight. The fuselage is made
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PRIVATE, TRAINER & COMPETION AIRCRAFF

.Wind.ecker Eagle

Bellanca Skyrocket II

FFT Speed Canard

Siingsby T-3A

Sukhoi Su-26M

Rutan Voyager
Avtek 400

Egrett D-500
Rutan AT3

Rutan ARES

Rutan Pond Racer

Sukhoi Su-31

FFT Eurotrainer

Grob GF 200

RUDASA Fan Ranger

1967

1975

1980

1983

1984

1984

1984

1987

1987

1990

1991

1991

1991

1992

1993

TOTALS

L L L L

L L L L

P P P P

P P P P

P P

D D D D

L L L L

L L L L

D D D D

D D D D

D D D D

P P P

P P P P

P P P P

L L L L

1151151 14[

L L L L L L

L L L L L L

P P P P P

P P P P P P

P P P P P P

D D D D D D

L L L L L L

L L L L L L

D D D D D D

D D D D D D

D D D D D D

P P P P P P

P P P P P P

P P P P P P

L L L L L L

13 I 15115114 I 15 115 I 15

RPVs & DRONES

!Ryan BQM-34E

(NADC)

B oein_, YQM-94A

Rockwell HiMAT

Ryan BQM-34F DAST

Boeing Condor

1971

1976

1980

1983

D D

D D

1991 D

ToTALs I 3 I

D D

D D

D D

D

D D

15141

P = Production* Including canards
? Year of first flight L = Limited Production

D = Development

D D D D D D

D D D D D D

D D D D D D D

3131313131313

Table A-6. - Composite components on private, trainer, competition, RPV, and drone aircraft.
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from welded stainless steel tubing with removable

composite skin panels, and the landing gear is
titanium. Operating g limits are + 12/-10 and the
aircraft was designed to an ultimate load factor of
+23. The Sukhoi Su-29 is a larger two-seat trainer

version of the Su-26M, designed to limit load
factors of +11/-9 solo and +9/-7 dual. The Su-31

is an all-composites higher performance follow-on
to the Su-26M and first flew in 1991 (Jane's;

Smith, 1993).

The German Grob company is producing
various all-composite airplanes made primarily of
GFRP. Grob was also a partner in the E-Systems/
Grob/Garrett Egrett-1 high altitude surveillance

aircraft project, which was terminated in 1993.
The company is headed by Dr. Burkhart Grob,
and, like Slingsby, has had many years of experi-

ence designing and manufacturing GFRP sail-
planes.

The Grob G 115 two seat light aircraft has
"conventional" GFRP structure and was certifi-

cated to FAR Part 23 standards by the German
LBA in 1987 and by the British CAA in 1988. It
now has FAA certification. Grob is currently

developing the GF 200 all-composite four seat
light aircraft.

FFF, another German company, has been

producing all-composite light aircraft for many
years. Their FFT Speed Canard two-seat sporting
aircraft first flew in 1980 and is certificated in

many countries including the US (Jane's).

The FFT Eurotrainer is a two seat trainer.

The airframe is primarily GFRP reinforced with
CFRP. The first Eurotrainer flew in 1991 and

obtained certification in 1992 (Jane's).

The last trainer aircraft listed in Table A-5 is

the Rockwell International/Deutsche Aerospace

Ranger 2000. Rockwell teamed with DA to de-
velop the Ranger 2000 for JPATS. The airplane is
a derivative of the German RFB Fantrainer that

was first produced in 1984. The airframe is almost
entirely made from GFRP with CFRP reinforce-
ment (Jane's; AW&ST, Sep 13, 1993).

REMOTELY PILOTED RESEARCH
VEHICLES AND DRONES

Various remotely piloted research vehicles

(RPRVs) have been made from advanced compos-
ite materials to demonstrate performance. Some of

the US RPRVs and drones are listed in Table A-6.

The Boeing YQM-94A Compass Cope was
an Air Force long range, high-altitude, unmanned
reconnaissance vehicle made almost entirely of

glass/epoxy with some Kevlar®/epoxy. The
vehicle, which had a wing span of 94 It, had an
endurance of 30 hours at 50,000 to 70,000 ft. Two
aircraft were made. The first one flew on July 28,

1973, but it was destroyed in a crash nine days
later. The second aircraft completed a successful
flight test program in 1974 and is now in the Air
Force Museum. The YQM-94A never went into

production (Bowers, 1989).

An NADC program included design, fabrica-
tion, and flight test of CFRP wings using a Ryan
BQM-34E supersonic drone as the baseline ve-
hicle. Five ship sets of wings were fabricated and
the first was proof-tested to 120% design limit
load (DLL) for one critical 5g maneuver condition
before flight. The other wings were proof tested to
100% DLL before flight (Manno, 1977;
McQuillen, 1971).

The wings were deployed at Pacific and
Atlantic ranges and flown on operational BQM-
34Es starting in 1976. After 10 flights or three
years of service, the wings were returned to
NADC for dissection and small specimen testing
(Manno, 1977;

The NASA HiMAT (Highly Maneuverable
Aircraft Technology) RPRV was designed and
built by Rockwell International to demonstrate
improved transonic maneuver performance using
aeroelastic tailoring. The HiMAT was a 0.44 scale
model of a 17,000 lb fighter and was designed to a
limit load factor of 12g. Almost the whole air-
flame was made out of CFRP and the anisotropic

properties of the CFRP wing covers were used to
provide aeroelastic tailoring (Monaghan, 1981;
DeAngelis, 1982).

The NASA DAST (Drones for Aerodynamic
and Structural Testing) program utilized a Ryan
Firebee II BQM-34T target drone aircraft. The
CFRP wing skins were mechanically attached to
metal substructure and were purposely designed to

have fiber controlled bending strength and stiff-
ness but matrix-controlled torsional stiffness and

shear strength. The wing was designed to encoun-
ter flutter within the flight envelope so that an
active flutter control system could be investigated
(Eckstrom, 1983).
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During the third test flight of the DAST,
divergent oscillations occurred with the flutter
suppression system on. The wing failed and the
aircraft crashed. The primary wing components
were recovered and flight testing was resumed in

1982. Although active flutter suppression was
effective, the study indicated that structural tailor-

ing using matrix-dominated properties should be
avoided (DeAngelis, 1982).

Boeing Advanced Systems designed a large
twin-engine robotic aircraft in 1988 under a
DARPA program. Nicknamed the "Condor", the
HALE (High Altitude Long Endurance) aircraft set
a high altitude record for piston engine aircraft at
66,980 ft in 1989. The "Condor" has a wing span
of more than 200 ft and has an all-bonded airframe

made almost entirely out of carbon/aramid/epoxy
hybrid materials _owers, 1989).

HELICOPTER APPLICATIONS

Composite materials have been used for many
different helicopter components including rotor
blades, stabilizers, and fuselage structure. Many of

the helicopters and their associated composite
structural components are listed in Table A-7.

Rotor Blades. - In 1959, the VertoI Aircraft

Corporation (previously the Piasecki Helicopter
Corporation and later Boeing Vertol and Boeing
Helicopters) started development of an "Optimum
Pitch Blade" for the XCH-47 twin-rotor helicopter.
These blades were made from E-glass/epoxy and
survived a 150 hour whirl test. This success led to

fabrication of ten CH-47 GFRP blades for static,

fatigue, and flight tests in 1964.

The CH-47 blade test program was followed
by the successful completion of a Navy-funded
GFRP production blade development program. By
the mid-1970s, GFRP blades had essentially re-

placed all 4130 steel spar blades on Boeing heli-
copters. The GFRP blades have a service life of at
least 10,000 hours compared with a life of about
1,000 hours for the blades with steel spars. Boeing
had made more than 10,000 GFRP blades for the

CH-46 and CH-47 by the end of 1992.

About the same time that Vertol was develop-
ing GFRP blades, Messerschmitt B61kow-Blohm
(MBB) developed GFRP blades for the hingeless,

semi-rigid rotor system for the Bo-105 helicopter.
Initial flight tests of the rotor system were made

using a Sud-Aviation Alouette helicopter and the
first flight of a Bo-105 was made in 1967. The Bo-
105 was still being produced in 1993 (Jane's).

Boeing Vertol and MBB reached a coopera-
tive agreement for Boeing to utilize the MBB
system and GFRP blade design for their Model
179, YUH-61A helicopter, which flew in Novem-
ber 1974. The tail rotor also had GFRP blades. The

YUH-61A was the Boeing Vertol contender for
the DoD UTTAS (Utility Tactical Transport
Aircraft System) competition, which was won by
Sikorsky with the UH-60A in 1976 (Air Int, Aug
1975).

Boeing Helicopters is responsible for the
five-blade main rotor system of the Boeing/
Sikorsky RAH-66A Comanche that is scheduled to
fly in 1994. Boeing is using a version of the MBB
all-composite bearingless system (Jane's).

Bell Helicopters and Kaman also began to
develop alI-GFRP blades in the late 1960s to
replace metal-spar blades. Bell blades had D-
shaped aluminum spars with bonded aluminum

skins; Kaman blades had aluminum spars with
GFRP skins. Kaman introduced all-composite
blades on the SH-2G in 1987. These blades have a

service life of 10,000 hours. (Jane's; Rosato, 1969)

By the mid-1970s, Bell started producing
GFRP blades for the AH-1 Huey Cobra, Model
214, and Model 222, but retained aluminum for the

tail rotor blades. Many Bell AH-I models were
produced or retrofitted with Kaman-designed K-
747 GFRP rotor blades between 1977 and 1988.
These blades also have a service life of the order

of 10,000 hours. (Jane's; Peacock, 1988)

Belt won the OH-58D, US Army Helicopter
Improvement Program (AHIP), in 1981. These
aircraft have the Bell four-blade rotor systems with

CFRP yokes, GFRP blades, and elastomeric
bearings. The first OH-58D flew in 1983 and
deliveries started in December 1985. The Bell

Model 406, a lighter version of the OH-58D, first
flew in 1990. The Bell Model 680 4-blade rotor

system ("Rotor 90") is almost entirely composites.
It is 15% lighter and has 50% fewer parts that the
current system (Jane's).

During the early 1970s, Sikorsky developed
main rotor blades composed of hollow titanium
spars with GFRP/honeycomb sandwich trailing
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AIRCRAFT YEARt

Sikorsky S-61 1959

Sikorsky CH-53 1965

MBB Bo 105 1967

Sikorsky CH-54 1971

Westland Wasp 1971

Boeing CH-46/CH-47 1974

Bell All- IF 1974

Sikorsky YUH/UH-60 1974/75

Boeing YUH-61A 1974
MD YAH-64/AH-64 1975/84

Sikorsky S-76 1977

Aerospatiale AS-365 1979

Westland Sea King 1979

BK-117 1979

Aerospatiale AS 332L 1980
Bell 206L 1981

Bell 412 1981

Kaman SH-2G 1981

Kamov Ka-32 1981

Mil Mi-28 1982

Agusta 129 1983

Sikorsky S-75 (ACAP) 1985

Westland Lynx 1986

Bell 292 (ACAP) 1986

Boeing 360 1987

Aerospatiale AS 565 1987

EH Industries EH 101 1987

Mil Mi-34 1987

MBB Bo 108 1988

MD MD 520N/530N 1990

Eurocopter Tiger 1992

MD MD 900 1992

Kamov Ka-62 1994

BoeinflSikorsh_' AH-66 1995
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Table A-7.- Composite components on helicopters.
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edges.Thesparswerepressurizedto checkthe
integrityof theblades.Thesebladesareusedfor
themilitary UH-60Black Hawk andthecivil S-76.
Sikorskybegandevelopmentof anew all-compos-
itebladefor theBlackHawk in 1991.Flight tests
beganin October1993.Thenewbladesareex-
pectedto havea servicelife of aboutI 0,000hours
comparedto 1,900hoursfor thebladeswith
titaniumspars.Full scaleproductionshouldbegin
in 1996(Kandebo,1993b).

McDonnellDouglas(previouslyHughes
Aircraft Company)usesaluminumskinsbondedto
extrudedaluminumsparsfor theirsmallhelicopter
mainrotor blades.Thebladesof theAH-64
Apacheattackhelicopter,whichenteredservicein
1984,aremadefrom GFRPtubeswith stainless
steelleadingedgesandGFRPtrailingedges
(Jane's).

Westland/Agustapartnership.TheEH-101,a large
military andcommercialgeneralpurposehelicop-
ter,wasfirst flown in 1987.Productionaircraftare
currentlybeingdeliveredto British andItalian
forces(Jane's).

In France,SudAviation (laterAerospatiale
andnow partof Eurocopter)first introducedGFRP
mainrotorbladeson theSA 341Gazelle,which
wasfirst flown in 1967.Tail rotor bladeswere
aluminum.ThebladeshadaGFRPsparandskins
supportedby afoamcore.Thecurrentversionof
theGazelle,theSA 342,wasstill beingproduced
in 1992(Jane's).

By 1990,AerospatialewasusingGFRP
bladeswith a CFRPhubfor themainrotor system
andCFRPbladesfor theductedfan of theAS 365
Dauphin2 helicopter(Jane's).

During thepastfew yearsMcDonnellDou-
glashasbeendevelopingalow-noisefive-blade
rotorsystemwith carbon/epoxyblades.The
company-fundedHARP (HelicopterAdvanced
RotorProgram)flexbeamCFRProtorwasfirst
flown onanMD 500Ehelicopter.Thisrotor is
usedin combinationwith theNOTAR (NoTail
Rotor)systemfor theMD 520NandMD 900
transport/utilityhelicoptersthatfirst flew in 1990
and 1992,respectively.TheMcDonnellDouglas
NOTAR systemwasfirst flown ontheMD 530N
in 1989andthefirst productionMD 520Nwas
deliveredin October 1991. With the NOTAR

system, the MD 520N and MD 900 are 50%
quieter than comparable helicopters (Jane's;
Proctor, 1993).

MBB teamed with Kawasaki to design and
produce the BK 117 multipurpose helicopter,
which made its maiden flight in June 1979. The
BK 117 main rotor system is similar to the MBB
Bo 105 system with hingeless GFRP blades. The

BK 117A was certified to FAR Part 29 require-
ments in Germany, Japan, and the US in December
1982, and the BK 117B model was certified by the
LBA, JCAB, and the FAA in 1987/1988. The

BK 117 is being produced in Germany, Japan,
Canada, and Indonesia (Jane's; Air Int, Apt 1989).

Some of the other helicopters that utilize
GFRP or mixed CFRP/GFRP rotor blades are the

Franco-German Eurocopter (DA/MBB with
Aerospatiale) Bo 108 and the PAH-2 Tiger.

Westland started production of the Lynx in
the UK in 1972 under a cooperative agreement
with Sud Aviation. The Lynx had rotor blades with
titanium spars, based on the Sikorsky design
(Westland was licensed to produce various
Sikorsky helicopter models). The Sea King Mk 2,
British derivative of the Sikorsky S-61D0 and the

Lynx AH Mk 9, an upgraded version of the Lynx,
were the first Westland helicopters to use GFRP
main and tail rotor blades. The Lynx composite
blades, developed under the British Experimental
Rotor Programme (BERP), were first flown in
1986, and the Lynx established a world helicopter
speed record of 249 mph (Jane's; Gething, 1990).

The blades of the EH Industries EH- 101 are

scaled-up versions of the BERP Lynx blades,
designed and built by Westland. EH Industries is a

The Italian Agusta A 109 and A 129 helicop-
ter blades have AFRP spars with GFRP skins,
Nomex® honeycomb core, and stainless steel
leading edge abrasion strips (Jane's).

All-composite blades were first produced in
Russia for Mil Mi-28 combat helicopter, which
first flew in I982. The blades are made from a mix

of CFRP, GFRP, and AFRP composites with a
Nomex®-type core. All the latest Russian helicop-
ters, which include the Kamov Ka-32 and Ka-62,

and the Mi-34 and Mi-38, have all-composite
blades (Jane' s; Fricker, 1990).

Helicopter Airframes. - During the past 35
years, use of composite materials in helicopter
structures has grown from a few small access
panels and canopy frames to almost all of the
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airframe.Compositeshaveprovidedweight
savings,which is particularlyimportantto helicop-
terperformance,aswell asimproveddurability
andcorrosionresistance,andreduceddrag.

SikorskystartedusingGFRPmaterialsfor
fairingsandsecondarystructureof theS-6! in
1959.Usewasextendedto thecanopyframeof the
CH-53in 1965,whenGFRPmaterialsaccounted
for about5%of thestructureweight.

In 1971,SikorskycompletedaNASA pro-
gramthatusedboron/epoxyto reinforcealuminum
componentson therearfuselageof theCH-54B
Skycrane.Staticandfatiguetestssatisfiedstrength
andlife requirementsandthereinforcedstructure
was130poundslighter thanthealuminum
baseline.A reinforcedrearfuselagewasput into
flight serviceonanArmy helicopterin April 1972.
Thehelicopterwastakenout of servicein after it
wasseverelydamagedin a wind storm.Thetail
boomwasnotdamagedandthehelicopterwas
subsequentlyrepairedandput backintoservice
with theNationalGuard.Theboron-reinforced
structureapproachhasnotbeenusedfor any
subsequentSikorskyhelicopters(Rich, 1972).

Secondgenerationcompositestructures
includedhorizontalstabilizers,fuselagepanels,
floors,doors,andthestabilizerof theS-76civil
helicopterin 1977andtheUH-60A BlackHawk in
1978.Thecombinationof 100lb airframeweight
savingsandreductionin dragfrom theflush
externalsmoothnessof thefuselageincreased
rangeby about20%(Ray,1982).

A joint NASA/Army for thedevelopment
andflight serviceof helicoptercomponents
complementedtheNASA ACEEprogramfor
transportaircraftstructuresandprovidedaddi-
tionalconfidencein composites.Thehelicopter
program,which wasstartedin 1979,included
flight serviceof 14SikorskyS-76horizontal
stabilizersandrotors; 160Bell 206L fairings,
doorsandverticalfins, andacargorampskin for
theSikorskyCH-53(NASA CP-2321,1984).

BoththeMBB/KawasakiBK 117andthe
AerospatialeDauphin(USdesignationHH-65A)
utilizecompositesfor horizontalandvertical
stabilizers,doors,floors,etc. (Jane's).

Third generationcompositestructures,which
useamix of CFRP,GFRP,andAFRPfor almost
all of theairframe,werefirst demonstratedby the

US Army SikorskYS-75AdvancedComposite
Aircraft ProgramI(ACAP)andtheBelt Model 292
ACAP in 1985/1986.Boeingseparatelydeveloped
theModel360all-compositetwin rotorhelicopter,
whichflew in 1987.Thesehelicoptersweretech-
nologydemonstratorsanddid not go intoproduc-
tion, but their developmentled to extensivepro-
poseduseof compositesoncontendersfor the
Army Light AttackHelicopter(LHX). TheLHX
contractwaswon by theBoeing/Sikorskyteam's
RAH-66Comanchein 1991.The first RAH-66is
scheduledto fly inAugust1995.TheRAH-66
fuselageis beingmadeprimarily of carbon/epoxy
andaramid/epoxyandhasabout350partscom-
paredto about6,000partsfor theUH-60 fuselage
(Jane's; Parker, 1993).

Other helicopters that have largely compos-
ites airframes include McDonnell Douglas MD
900 and the German MBB Bo 108, both of which

are in production, as well as the Eurocopter Tiger
and the Russian Kamov Ka-62. The composite
fuselage of the Bo 108 has almost 30% less drag
than the Bo 105 aluminum fuselage (Jane's).

The Tiger is an attack helicopter that is being
developed by Eurocopter (the DA/Aerospatiale
consortium) for the German and French armies.
Deliveries are scheduled to begin in 1997 (Jane's;
Mordoff, 1988).

The Kamov Ka-62 is a multi-purpose heli-
copter. Composites account for about 50% of the
airframe weight and include the main cabin shell,
floors, tailboom, stabilizers, fan duct, and fan
blades (Jane' s).

The Italian Agusta A 129 Mangusta attack
helicopter airframe is a mix of composites and
aluminum. The A 129 first flew in 1983 and

entered service with the Italian Army Aviation in

1990. Some 900 lb of composite materials are used
for the nosecone, canopy frame, tailboom, tail
rotor pylon, engine nacelles, and the stabilizers,
accounting for about 45% of the airframe weight
(Jane's).

EH Industries was formed in 1980 by

Westland Helicopters and Augusta. The EH 101
multi-role helicopter first flew in Italy 1987.
British and Italian civil certification was expected

in 1993. Military variants, scheduled to enter
service in 1995, include naval and land-based

helicopters for the British, Italian, and Canadian
forces. Composites are used for the canopy frame,
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forwardfuselage,vertical andhorizontalstabiliz-
ers,uppercowlings,andengineinlets.

Compositematerials,primarily GFRPor
AFRPwith CFRPreinforcement,havebecomethe
standardmaterialsfor helicopterstabilizers,engine
doors,cowlings,fairings,doors,landinggear
doors,floor panels,stubwings,sponsons,andfan
ducts.McDonnellDouglasmadesomeAH-64
stabilizersfrom carbon/thermoplastics,but they
werenot flown or put intoproduction(Colucci,
1991).

OBSERVATIONS AND CONCLUSIONS

The following observations and conclusions
are drawn from a review of the international

aircraft programs described in this Appendix as
well as from the interviews with industry and
government personnel.

Advanced composites are being used exten-
sively for primary and secondary structures of
many new US and foreign military and commer-
cial aircraft. The technical risks involved with the

use of composites appear no greater than those
associated with metals.

Overall weight savings have been achieved
by using composites instead of metals. Component
weight savings can be as high as 35%. Typically,
composites make up between 22% and 35% of the
airframe by weight for new US and foreign mili-
tary tactical aircraft. The composite horizontal
stabilizer on the Airbus A320 is 15% lighter than

its aluminum counterpart and the ATR 72 outer
wing saves 20% (Barrio Cardaba, 1990; Pilling,
1988).

Weight savings were the major consideration
when Boeing decided to introduce advanced
composites on the B757 and B767 in the late
1970s. The price of jet fuel had increased from
$0.12/gal in 1973 to $1.04/gal in 1981 (Aerospace
Facts & Figures; Bowers 1989).By 1991, the price
of jet fuel had dropped to $0.69/gal, but the prices
of commercial transport aircraft have increased by

almost 500 percent since 1973. The cost of fuel
dropped from 30% of cash operating expenses in
1981 to 14.8% in 1991. (Aerospace Facts &
Figures) In today's business environment, weight
savings are not marketable unless they can be
accomplished at no additional cost.

Until the mid 1980s, Boeing was the only

company utilizing advanced composite materials
for spoilers, elevators, rudders, and flaps of com-
mercial transport aircraft (B757, B767, B737-300).

In 1985, Airbus moved ahead by adding the A310
composite vertical stabilizer and, in 1987, they
added both the horizontal and vertical stabilizers

of the A320 to their list of applications. The A330
and A340 also have composite stabilizers. As of
December 1991,247 A320s were in airline ser-
vice.

The European aircraft community moved
further ahead when ATR introduced advanced

composite outer wings on the ATR 72 in 1988 and
Deutsche Airbus selected CFRP for the rear

fuselage and pressure bulkhead of the Dornier Do
328 in 1991. As of December 1991, 48 ATR 72s
were in airline service.

Boeing is adding horizontal and vertical
stabilizers and cabin floor beams to the list of

composite components on the B777, which is due
to fly next summer. By that time, Airbus will have
an advantage of at least eight years of production
and service experience of advanced composite
stabilizers. On the other hand, Boeing may use of
less advanced composites on their derivative 737
(737-X) than the 737-300 because smaller airlines,

who are the potential customers for the 737-X, do
not have the composite maintenance and repair
capabilities of larger carriers.

McDonnell Douglas is using advanced
composites for most of the control surfaces of the

MD-11. The aileron is a post buckling design
derived from the DC-10 rudders developed under
the NASA ACEE program.

The NASA Aircraft Energy Efficiency
Program (ACEE) Primary Aircraft Structures
Program, which ran for about 15 years from 1972
until 1987, was very successful in demonstrating
the technology readiness and cost effectiveness of
composite structures for commercial transports
(NAA CP-2321, 1984). In retrospect, the NASA
flight service experience programs and the ACEE
program had enormous influence on the accep-
tance of advanced composite structures by industry
and the aircraft operators in the US and abroad.
Many of the components developed under these
programs (e.g., the DC-10 vertical stabilizer and
rudders and the Boeing 737 horizontal stabilizers
and spoilers) are still in scheduled airline service
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afteralmost20years.Successfulserviceperfor-
manceof theBoeing737compositespoilersand
horizontalstabilizersandthe727elevatorspro-
videdBoeingwith theconfidenceandtechnology
neededto committo thecompositeelevatorsand
ruddersfor theB757andB767,andlately,to the
horizontalandverticalstabilizersfor theB777.

Theairlines,however,areveryconcerned
aboutthin-skinhoneycombsandwichcomposite
secondarystructures.Thesepartsoftengetdam-
agedin service(generallyduringaircraftmainte-
nance)andthecostsof repair,replacement,or
leasingsparepartsareveryhigh. As notedabove,
Boeingmaychangeanumberof secondarycom-
positecomponentsbackto metal onthenew
B737-X.

Costsareuniversallyrecognizedasthe
biggestproblemassociatedwith compositesusein
placeof conventionalmetalstructures.Manyof
themilitary aircraftprogramshavehadconsider-
ablecostoverruns.Somecostincreasesaredi-
rectlyassociated with composite structures and
some with inexperience in the design and manu-
facture of composites. The costs of composites
maintenance, repair, and replacement parts add to
the overall cost problem. Regardless of type of
material, the prices of military aircraft structures
are much higher than those of comparable com-
mercial and business aircraft structures. Based

upon current program cost estimates, the fly-away
prices of new military aircraft structures range
from $1,300/1b for the McDonnell Douglas C-17
and $1,500/lb for the Lockheed F-22 to $4,000 for

the Northrop B-2B. Prices will increase further if
production rates and quantities are reduced. In
contrast, the current prices of commercial turbojet
and turboprop transport aircraft range from $200/
tb to $300/lb (Aerospace Facts & Figures;
Hadcock, 1985, 1989; McCarty, 1991).

As was the case with military aircraft, costs

are also the biggest problem associated with
composites use in place of conventional metal
structures on commercial transports. Costs include
production costs, as reflected in airplane prices, as
well as in-service costs associated with component

inspection, maintenance, repair, and replacement.

Nearly all the people interviewed thought
that the prices of composite components are higher
than their metal counterparts, and that, to be
marketable, their prices should be comparable. The

prices of current commercial transport airframes,

based on aircraft prices, have remained relatively
uniform at $200/lb to $300/lb (Whitehead, 1993;

McCarty, 1991).

Allowing for a 20% weight saving, prices of
installed composite structures should be competi-
tive with metal structures in the $250/1b to $350/Ib

range. Component prices should be in the $200/1b
to $300/lb range to allow for final assembly costs.

Many composite parts are supplied by
coproducers or subcontractors under fixed price
contracts. Since the price is rarely broken down
into individual elements, the individual cost of a

unit or ship set of composite components is impos-
sible to obtain.

As an example, the Japan Aircraft Develop-
ment Corp. (JADC) is contributing 21% to the
Boeing 777 project for design and production of
the fuselage, center wing, and wing-body fairings
for the life of the 777 program. Grumman has a
10-year, $400 million contract to produce the 777
composite inboard flaps and spoilers, and
Rockwell, CASA, HDH, and Alenia have con-

tracts to produce other composite components
(O'Lone, 1991).

Since the end of the Cold War and the cut-

back in defense spending, there will be fewer new
military aircraft opportunities and the gestation
time period will probably be longer than ten years.
US companies (McDonnell Douglas, Boeing,
Northrop, Lockheed, Grumman, and Vought) are
still the world leaders in composites technology
and production experience for high performance
military aircraft. However, retention and transfer
of technical information and experience will be a
major problem in the future. Much more reliance
will probably have to be placed on use of compos-
ite technology and materials developed for com-
mercial aircraft.

Other than the Boeing 777 and 737-X,
development of any new US commercial transport
aircraft is unlikely during the rest of the century.
The development of the Boeing 777 is almost
complete, and it is improbable that any material
changes will be made at this stage of the program.
Although composites could be considered on
derivative aircraft, Boeing has chosen to use fewer
composites on the 737-X than they presently have
on the 737-300 because of the problems the
smaller airlines have with repair and maintenance
of composites.
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Realistically,thenextmajorUSopportunity
for extensivecompositesusewill be theHigh
SpeedCivil Transport(HSCT) aircraft,which
desperatelyneedstheweight savingsprovidedby
hightemperaturecomposites.TheHSCTwill
probablynot fly before2005(Whitehead,1993;
Blankenship,1991).

With afew notableexceptions,useof com-
positesongeneralaviation(GA) airplaneshas
beenveryconservativeandhasbeenlimited to
controlsurfaces,flaps, fairings, landinggear
doors,andenginenacelles.Certificationfor these
componentshasbeenrelativelystraightforward
andhasnotrequiredstructuraltestingof the
completeairframe.Generally,in-serviceperfor-
mancehasbeentroublefree.

Fivedifferentall-compositeGA airplanes
havebeendesignedandbuilt in theUSduring the
pasttwentyyears.None has been an unqualified
success. Private aircraft include the Windecker

Eagle and the Bellanca Model 25 Skyrocket II.
Business aircraft include the LearFan 2100, the
Beech Model 2000 Starship, and the Avtek 400A.

FAA airframe certification was granted to

the Windecker Eagle, LearFan, and Starship after
lengthy and expensive test programs. The Bellanca
Skyrocket was never certificated and the certifica-
tion program for the Avtek 400, which first flew in
1984, has yet to be completed.

LearFan went out of business in 1985 follow-

ing a number of program delays and certification

problems. Two flight-test and one structural-test
aircraft were built (Jane's). Windecker Research
ceased operations in 1976 after completion of 8
aircraft (Jane's; Simpson, 1991).

The all-composite (primarily GFRP) British
Slingsby T.67 Firefly (USAF T-3A) and the
German Grob G-115 civil/military trainers appear
to have avoided the financial problems of the
Eagle and Skyrocket. Both aircraft obtained civil
certification in the mid-1980's and combined civil

and military sales have been about 320 for the
Firefly and 100 for the G-115. Prior to the intro-
duction of these trainer aircraft, Slingsby and Grob
had extensive design and manufacturing experi-
ence producing high-performance GFRP sail-
planes.

,_vtek Corporation is building two ground
test aircraft for FAA certification tests to FAR Part

23 requirements, but will require about $70-
million to complete the flight tests and structural
tests needed for the FAR Part 23 certification

program.*

Beech Aircraft Corporation first flew the
prototype Starship in 1986 following the flight-test
program on an 85% scale proof-of-concept (POC)
aircraft. The full-scale aircraft did not have the

performance projected from the POC program.
Between 1984 and 1990, structure, empty, and
takeoff weights increased by 4%, 29%, and 19%,
respectively. These weight increases reduced
cruise speed, fuel efficiency, and range.

The airframe of the Starship, which is 67
percent composites by weight, has been blamed for
the poor performance of the aircraft. It is approxi-
mately the same price as the Piaggio Avanti and
Beechjet ($4-million), but is slower and has a
higher approach speed than the other aircraft. The
poor performance appears to have been caused by
the aerodynamics of the unconventional configura-
tion of the aircraft and by systems weight growth,
and not by the weight of the composite airframe,
which is only 27 per cent of takeoff gross weight
(Abbott, 1986; Aerospace Eng., 1990).

In retrospect, the late 1970s and early 1980s
were inopportune times for Windecker, Bellanca,
LearFan, and Avtek to enter the GA marketplace.
Their composite aircraft were introduced during a
time when sales of GA aircraft were on the de-

cline. In the case of US single-engine piston
aircraft, sales dropped from 14,400 aircraft in 1978
to 1811 aircraft in 1983 and only 564 aircraft in
1991. In the case of twin-engine turboprop aircraft,
sales dropped from 918 airplanes in 1981 to 222
aircraft in 1991 (Aerospace Facts & Figures). The
newly formed companies were trying to enter this
declining market with new aircraft designs made
from unconventional materials. Their competitors
(Beech, Cessna, Piper) had extensive aluminum
airplane design and production experience, world-

class reputations, and world-wide sales and sup-
port organizations.

The huge costs of full-scale engineering

development and associated wind tunnel, struc-
tural, and flight testing, as well as the delays and
modifications associated with certification of new

*Private communication from Robert Adikes, Avtek Corp.,
September 1993.
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aircrafttypes,werenot fully anticipated.These
delayscausedlostordersandcompoundedfinan-
cialproblems.Noneof thenew companieshadan
establishedproductline thatcouldcarrythem
throughthelengthydevelopmentprograms.Their
futuredependedon timelydeliveryof their prom-
isedproduct.As customerconfidencefaded,sodid
theirfinancialsupport.

TheBeechStarshipmight havehadaniche
in themarketif its performancehadcomeup to
expectationsandif theprogramhadnotbeen
delayedby structuralcertificationproblems.As it
happened,theStarshipseemsto haveendedup as
acompetitorto theBeechjetandthePiaggio
Avanti,bothof whicharein thesame$4million
pricerangeandhavemuchbetterperformance.

LindonBlue,presidentof Beechduringthe
early 1980'swhenthedecisionwasmadeto go
aheadwith theStarshipprogram,seemedto have
anticipatedtheStarshipproblemswhenhewrote:

'As to the execution, weights must be forced

to fulfill the composite promise of 20-30 per cent,
surfaces must be mirror- smooth and yield laminar
flow, attention to producibility and economy must
start when the CAD-CAM CRT is first switched on.
Absence of any of these critical points of concen-
tration .... will result in a product that will prob-
ably be a market bummer even if it is fortunate to

get past the prototype stage.' (Blue, 1985).

The use of composite (primarily GFRP) rotor
blades on helicopters has raised blade operational
life from between 1,000 and 3,000 hours to 10,000

or more flight hours. Composite blades can be
designed to be "fail-soft" and do not require as
frequent inspection for cracks as do metal blades.
In addition, blade and rotor system efficiencies

have been improved because of the tailorability of
composites. Composite blades are generally no
lighter and are more expensive than their metal-
spar counterparts. However, their longer life and
reduced in-service inspection requirements make
them very attractive and cost-effective for both
military and civil helicopters.
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